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1 Formulations of optimization problems

Consider real functions f : Rn → R, gk : Rn → R, k = 1, . . . ,m, hj : Rn → R,
j = 1, . . . , p. Then general mathematical programming/optimization problem can be
formulated as

min f(x)

s.t. gk(x) ≤ 0, k = 1, . . . ,m,

hj(x) = 0, j = 1, . . . , p,

x ∈ Rn,

where we consider

• f(x) – objective function,

• gk(x) ≤ 0 – inequality constraints,

• hj(x) = 0 – equality constraints,

• x ∈ Rn – continuous/real decision variables,

• set of feasible solutions M ⊂ Rn

M = {x ∈ Rn : gk(x) ≤ 0, k = 1, . . . ,m, hj(x) = 0, j = 1, . . . , p}.

• We say that x̂ ∈M is optimal solution of the above problem if f(x̂) ≤ f(x) for
all x ∈M . Then f(x̂) is optimal value.

If for some/all decision variables it holds xi ∈ N, then we speak about integer variables
and (mixed-)integer programming problems. If a variable is restricted to values 0 or
1, i.e. xi ∈ {0, 1}, we call it binary variable. We can also classify the problems
according to the functions. If all functions f, gk, hj are linear, then we speak about
linear programming problem (LP). If at least one function is nonlinear, then we face a
nonlinear programming problem (NLP). If all functions are polynomial, but at most
quadratic, then the problem is called quadratic (QP).

Example 1.1. Consider the linear regression model

yi = βTxi + εi, i = 1, . . . , n,

where β ∈ Rm are unknown coefficients, xi ∈ Rm is vector of regressors (explanatory
variables), yi is dependent variable and εi ∼ (0, σ2) are i.i.d. error terms. Derive the
l2 and l1 estimates of its parameters for the following cases:

1. without additional constraints,

2. with linear constraints on coefficients, e.g., the sum of all coefficients is at most
1,

3. the number of nonzero coefficients is restricted by κ < m, i.e. so called cardi-
nality constraint or sparsity is applied.

Discuss the classification of the resulting optimization problems.
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Solution. 1. l2 estimate called also least square estimate can be obtained as

min
β

n∑
i=1

(yi − βTxi)2.

If we set

X =


xT1
xT2
...
xTn


and

Y T = (y1, . . . , yn),

we can rewrite the problem in the matrix form

min
β

(Y −Xβ)T (Y −Xβ) = min
β
Y TY − 2Y TXβ + βTXTXβ.

Obviously the problem is continuous quadratic (without constraints).
Getting l1 estimate leads to problem

min
β

n∑
i=1

|yi − βTxi|.

Before solving the problem, we would like to avoid the absolute value since it is
nondifferentiable and can cause problem even to professional software tools. We can
use two new nonnegative variables and set

z+i − z−i = yi − βTxi, z+i , z−i ≥ 0.

Then, when we minimize the absolute value, we get the equality

min
β

n∑
i=1

|yi − βTxi| = min
β,z+,z−

n∑
i=1

z+i + z−i

subject to (s.t.) the constraints

z+i − z−i = yi − βTxi, z+i , z−i ≥ 0, i = 1 . . . , n.

Obviously the resulting problem is now continuous linear (with constraints).

2. Now, we add linear constraints on the coefficient which can be motivated by
econometric applications. The l2 estimate leads to problem

min
β

n∑
i=1

(yi − βTxi)2

s.t.
m∑
j=1

βj ≤ 1,
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which a continuous quadratic program with a constraint. More linear constraints can
be added, e.g., in the matrix form

min
β

βTXTXβ − 2Y TXβ + Y TY

s.t. Aβ ≤ b,

where A ∈ Rk×m and b ∈ Rk, i.e. we have added k linear constraints. The l1 case is
analogous.

3. The cardinality constraint, i.e. a restriction on the number of nonzero coefficients
or in general elements of the decision vector, can be modelled using binary variables.
We consider additional binary variables zj ∈ {0, 1}, which must be equal to one if
the corresponding coefficient βj is nonzero. This can be ensured by the following
constraints

−M zj ≤ βj ≤M zj, j = 1, . . . ,m,

where M is a sufficiently large constant. Realize that we assume that |βj| ≤M . The
sparse l2 estimate is then obtained by solving

min
β,z

n∑
i=1

(yi − βTxi)2

s.t. −M zj ≤ βj ≤M zj, j = 1, . . . ,m,
m∑
j=1

zj ≤ κ,

zj ∈ {0, 1}, j = 1, . . . ,m,

which is a mixed-integer (mixed-binary) quadratic programming problem. In the case
of sparse l1 estimate we obtain problem

min
β,z,z+,z−

n∑
i=1

z+i + z−i

s.t. z+i − z−i = yi − βTxi, i = 1 . . . , n,

−M zj ≤ βj ≤M zj, j = 1, . . . ,m,
m∑
j=1

zj ≤ κ,

z+i , z
−
i ≥ 0, i = 1 . . . , n,

zj ∈ {0, 1}, j = 1, . . . ,m,

which is a mixed-integer linear programming problem.

Example 1.2. The company produces 3 types of products V1, V2, V3. In production,
raw materials S1 and S2 and machine time Z1 are consumed. To produce 1 kg of
product V1, 2 kg of raw material S1 and 6 kg of raw material S2 are consumed, the
production time is 13 hours. To produce 1 kg of product V2, 3 kg of raw material S1

and 8 kg of raw material S2 are needed for 17 hours. The production time of V3 is
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15 hours and 5 kg of raw material S1 and 1 kg of raw material S2 are consumed. For
1 year, we have 200 kg of S1, 150 kg of S2 and 1800 hours on the Z1 device. When
selling, the company will receive 2 CZK for 1 kg V1, 4 CZK for 1 kg V2 and 3 CZK
for 1 kg V3. Determine the optimal production schedule, i.e. determine how many kg
of which product should be produced per year to maximize profit.

Solution. The solution includes the following steps:

• introducing the variables used in the problem,

• formulation of the objective function,

• introducing restrictions on variables,

• variable value range definition.

Decision variables x1, x2, x3 express the number of kg of products V1, V2, V3 that will
be produced during a year. The objective is then

max 2x1 + 4x2 + 3x3

under the constraints (s.t.)

2x1 + 3x2 + 5x3 ≤ 200,

6x1 + 8x2 + x3 ≤ 150,

13x1 + 17x2 + 15x3 ≤ 1800,

together with nonnegativity constraints

x1 ≥ 0, x2 ≥ 0, x3 ≥ 0.
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2 Extremes of functions

Example 2.1. Verify the inequality between the arithmetic mean and the geometric
mean

1

n
(x1 + · · ·+ xn) ≥ n

√
x1 · · ·xn

for positive xi > 0.

Solution. We rewrite the task of finding extrema of the function n
√
x1 · · · xn on the

set 1
n
(x1 + · · ·+ xn) = c i.e.

max (x1 · · ·xn)1/n

s.t.
1

n

∑
i

xi = c,

we express the Lagrange function

L(x, λ) = (x1 · · ·xn)1/n + λ

(
c− 1

n

∑
i

xi

)
,

and derive the optimality/stationary conditions:

∂L(x, λ)

∂xi
:

1

n
(x1 · · ·xn)1/n−1 · x1 · · ·xn

xi
− λ

n
= 0, i = 1, . . . , n,

∂L(x, λ)

∂λ
:

1

n

∑
i

xi = c.

modifying the first equations, we get

1

n
(x1 · · · xn)1/n =

λ

n
xi,

and if we sum for all i, we get

(x1 · · ·xn)1/n =
λ

n

∑
i

xi.

We can substitute this back into the equation

λxi = (x1 · · ·xn)1/n,

and get the necessary condition

xi =
1

n

∑
i

xi = c, ∀i.

In other words, the maximum of this problem is c. The Lagrange multiplier can be
obtained from

λc = (c · · · c)1/n = c,

i.e. λ = 1.
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Example 2.2. Find the extrema of the following function

f(x, y) =
√

3x− y + 2

on the set x2 + 2x+ y2 = 0.

Example 2.3. Find the global extrema of the following function

f(x, y) =
1

2
x2y − x2 + xy − 2x+ y2 − 7

2
y + 1

on the set [−3, 1]× [0, 4].

Solution. Denote by M = [−3, 1]× [0, 4] the set of feasible solutions. First we look
at the free extreme:

∂f

∂x
(x, y) = (x+ 1)(y − 2)

∂f

∂y
(x, y) =

1

2
x2 + x+ 2y − 7

2
.

The necessary condition for a local extremum is met at the point [−1, 2] ∈M , which
is a stationary point. We must compute Hessian matrix

H(−1, 2) =

(
y − 2 x+ 1
x+ 1 2

)
|(x,y)=[−1,2] =

(
0 0
0 2

)
According to the rule about major minors, this is a positive semidefinite quadratic
matrix, so we cannot draw any conclusions from it.

Alternatively, we can modify the function to

f(x, y) =
1

2
(x+ 1)2(y − 2) + (y − 2)2 − 2

and thus verifying whether in at the point [−1, 2] the local minimum is equivalent to
the fact that the function g(x, y) = 1

2
x2y + y2 has at the point [0, 0] local minimum.

But let’s consider the parameterization x = 2t, y = −t2, we get g(2t,−t2) = −2t4 +
t4 = −t4. But this function has in t = 0 a local maximum and therefore the functions
g(x, y) and f(x, y) do not have a local minimum at the suspicious points.

Global extremes can be found by examining the stationary points and extreme
points identified on the boundary of the set M . Let’s examine the line segments first.
We substitute for x = −3 and get the function

f(−3, y) = y2 − 2y − 2.

This quadratic function takes an extremum at y = 1. This leads to the suspicious
point [−3, 1]. Similarly, successively substituting after x = 1, y = 0 and y = 4 we
get other suspicious points [1, 1], [−1, 0], [−1, 4]). To these we still need to add the
corners: [−3, 0], [−3, 4], [1, 0], [1, 4]. Examining the function value, we find that the
global maximum of the function takes place in [-3, 4] and [1,4] and that is 6, while
the global minimum then in [-3,1] and [1,1] and that is -3.
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Note that later we will be able to solve the problem as a nonlinear programming
one in the form

min
1

2
x2y − x2 + xy − 2x+ y2 − 7

2
y + 1

s.t. − 3 ≤ x ≤ 1,

0 ≤ y ≤ 4,

c.f. Section 7.
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3 Convex sets

Definition 3.1. We say that a set A is convex if, with every two points, it also contains
their convex linear combination, i.e. ∀x, y ∈ A and λ ∈ (0, 1) is also λx+(1−λ)y ∈ A.

Example 3.2. A,B ∈ Rn convex. Decide whether or not the following sets must also
be convex.

1. A ∪B,

2. A ∩B,

3. A \B,

4. AC ,

5. cl(A) = Ā,

6. int(A),

7. αA,

8. Minkowski sum A+B = {x ∈ Rn, x = a+ b, a ∈ A, b ∈ B} =
⋃
b∈B(A+ b),

9. Minkowski difference A	B = {x ∈ Rn, x+ (−1)B ⊂ A} =
⋂
b∈B(A− b),

10. Cartesian product A×B.

Solution. In turn, either by proof or counterexample:

1. no, e.g.: A = {0}, B = {1}, x = 0, y = 1, λ = 1/2.

2. yes, let x, y ∈ A ∩ B, λ ∈ [0, 1], then x, y ∈ A, x, y ∈ B, these are convex,
so it holds and that λx + (1 − λ)y ∈ A, λx + (1 − λ)y ∈ B and therefore
λx+ (1− λ)y ∈ A ∩B

3. no, e.g.: A = [0, 1], B = {1/2}, x = 0, y = 1, λ = 1/2.

4. no, e.g.: A = {0}, x = −1, y = 1, λ = 1/2.

5. yes, x, y ∈ Ā, ∃xn, yn such that xn → x and yn → y and at the same time
λxn+(1−λ)yn ∈ A. From the assumptions λxn+(1−λ)yn → λx+(1−λ)y ∈ Ā.

6. yes, x, y ∈ A ⇒ ∃ε > 0 : Uε(x) ⊂ A,Uε(y) ⊂ A. Choose λ ∈ (0, 1) and
z ∈ Uε(λx+(1−λ)y). x+z−(λx+(1−λ)y) ∈ Uε(x) and y+z−(λx+(1−λ)y) ∈
Uε(y). The convex combination of these points is z, and z ∈ A follows from the
convexity of A, which gives us that λx+ (1− λ)y ∈ int(A).

7. yes, for α = 0 trivial, let α 6= 0 and x, y ∈ αA, λ ∈ [0, 1], then x/α, y/α ∈ A
and it is convex, so it is also true that (λx/α + (1− λ)y/α) ∈ A and therefore
λx/+ (1− λ)y ∈ αA.

8. left to the readers,
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9. left to the readers,

10. directly from the definition.

Example 3.3. Let M ⊂ Rn be a closed convex that contains the line p. Show that for
b ∈M and b /∈ p, the set M contains a line parallel to p passing through the point b.

Solution. We know that there exist a ∈ M and u ∈ Rn, that a + tu ∈ M , t ∈ R,
where the vector u determines the direction of the line p. From the convexity of M
it follows, λ(a + tu) + (1− λ)b = b− λ(b− a) + λtu, for each λ ∈ [0, 1], t ∈ R. This
means that b − λ(b − a) + su ∈ M for every s ∈ R and λ > 0. The limit transition
for λ→ 0+ is b+ su ∈ clo(M) = M .

Example 3.4. Let A have the property that ∀x, y ∈ A also x/2 + y/2 ∈ A.

1. is A convex?

2. is A convex if we know that A is closed?

3. is A convex if we know that A is open?

Solution. We realize that it is possible to assemble combinations of the type

kn
2n
x+ (1− kn

2n
)y,

with kn ∈ N, n ∈ N and kn ≤ 2n, e.g.

1

2

(x
2

+
y

2

)
+
y

2
=

1

4
x+

3

4
y ∈ A.

1. no, e.g. Q satisfies the given requirement but is not convex.

2. yes, since ∀λ ∈ [0, 1] there exist λn = kn
2n

such that λn → λ. We know that
λnx+(1−λn)y ∈ A and since A is also closed λnx+(1−λn)y → λx+(1−λ)y ∈
cl(A) = A.

3. yes, choose x, y ∈ A, λ ∈ [0, 1] and ε > 0 : Uε(x) ⊂ A,Uε(y) ⊂ A. Then there
exists λn = kn

2n
: |1−λ/λn| < ε/(|x|+|y|). Let us define xn = x·λ/λn+y−yλ/λn.

Applies to:

|x− xn| ≤ |x(1− λ/λn)− y(1− λ/λn)| ≤ |1− λ/λn| · (|x|+ |y|) ≤ ε.

In other words, xn ∈ A, then λnxn + (1− λn)y = λx+ (1− λ)y ∈ A.
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3.1 Geometry for linear programming problems

Remind terms from the lectures: convex hull, non-negative (positive) hull, extreme
points, direction of a set, extreme directions, P + K decomposition for convex poly-
hedral set (not containing a straight line):

A = conv(ext(A)) + pos(extd(A)),

where P = conv(ext(A)) is a convex polyhedron generated by a finite number of
extreme points ext(A), and K = pos(extd(A)) is a convex polyhedral cone generated
by a finite number of extreme directions extd(A). The theory and algorithms for
linear programming problems are based on these terms and properties.

Definition 3.5. We say that A ⊆ Rn is a convex polyhedral set if it is the intersection
of finitely many closed half-spaces, i.e. sets of the form

{
x ∈ Rn, aTx ≤ c

}
. A convex

polyhedron (= polytope) is a bounded convex polyhedral set.

Definition 3.6. A cone is a set K ⊆ Rn for which 0 ∈ K and ∀x ∈ K,α ≥ 0 also
αx ∈ K. A convex cone is a convex set that satisfies the definition of a cone.

Example 3.7. Decide what type the following sets are

1.

x+ 2y ≥ 2

−2x+ 3y ≤ 6

x, y ≥ 0

2.

x+ 2y ≥ 2

−2x+ 3y ≤ 6

x+ y ≤ 4

Solution. With the help of the graph it can be seen that

1. convex polyhedral set:

A1 = conv
(
{(2, 0), (0, 1), (0, 2)}

)
+ pos

(
{(1, 0),

1√
13

(3, 2)}
)
,

2. convex polyhedron:

A2 = conv

({(
−6

7
,
10

7

)
, (6,−2),

(
6

5
,
14

5

)})
+ pos (∅) .

Example 3.8. Decide which set is a convex polyhedron and which one is not:

1. A1 = {(x, y) ∈ R2 : |x|+ |y| ≤ 1},
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2. A2 = {(x, y) ∈ R2 : −1 ≤ x ≤ y ≤ 1},
3. A3 = {(x, y) ∈ R2 : |x+ y| ≤ 1}.

Solution.

1. convex polyhedron (L1 circle):

A1 = conv{(1, 0), (−1, 0), (0, 1), (0,−1)},

2. convex polyhedron:

A2 = conv{(−1, 1), (−1,−1), (1, 1)},

3. convex polyhedral set, not polyhedron:

A3 =
{

(x, y) ∈ R2 : x+ y ≤ 1, x+ y ≥ −1
}
.

Since A3 contains a straight line, it has no P +K decomposition.

Example 3.9. Verify that the set K = {(x, y) ∈ R2 : 0 ≤ x ≤ y} is a convex cone,
which does not contain a straight line.

Solution. Choose (x1, y1), (x2, y2) ∈ K,λ ∈ [0, 1]. Apparently also 0 ≤ λx1 + (1 −
λ)x2 ≤ λy1 + (1− λ)y2.

Example 3.10. Decide which set is a convex polyhedral set, a polyhedron or a cone:

1. A1 = {(x, y, z) ∈ R3 : |x| ≤ 1, |y| ≤ 1, |z| ≤ 1},
2. A2 = {(x, y, z) ∈ R3 : |x|+ |y|+ |z| ≤ 1},
3. A3 = {(x, y, z) ∈ R3 : |x+ y + z| ≤ 1},
4. A4 = {(x, y, z) ∈ R3 : |x| ≤ |y| ≤ |z|},
5. A5 = {(x, y, z) ∈ R3 : x+ y + z ≤ 1, x ≥ 0, y ≥ 0, z ≥ 0}.

Solution.

1. convex polyhedron:

A1 = conv{(−1,−1,−1), (−1,−1, 1), (−1, 1, 1), (−1, 1,−1),

(1,−1,−1), (1,−1, 1), (1, 1,−1), (1, 1, 1)},

2. convex polyhedron:

A2 = conv{(1, 0, 0), (−1, 0, 0), (0, 1, 0), (0,−1, 0), (0, 0, 1), (0, 0,−1)},

3. convex polyhedral set (containing straight line), not convex polyhedron, nor
cone,

4. nonconvex cone, consider points (0.5, 0.5, 1) and (0.5,−0.5, 1) and λ = 0.5.

5. convex polyhedron:

A5 = conv{(0, 0, 0), (1, 0, 0), (0, 1, 0), (0, 0, 1)}.
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4 Separating hyperplane theorems

Please see Lecture notes, Section 1.5: theorem about projection of a point to a
convex set (obtuse angle), separation of a point and a convex set, proper and strict
separability.

Using the theorem about the separation of a point and a convex set, prove the
following lemma about the existence of a supporting hyperplane.

Lemma 4.1. Let ∅ 6= K ⊂ Rn be a convex set and x ∈ ∂K. Then, there is γ ∈ Rn,
γ 6= 0 such that

inf{〈γ, y〉 : y ∈ K} ≥ 〈γ, x〉 .

Hint: separate a sequence xn /∈ K which converge to the point x on the bound-
ary, show the convergence of separating hyperplanes characterized by γn 6= 0. See
Theorem 1.45 in Lecture notes.

From the following examples, where we can draw a picture, you have to get an
idea of the separability of sets and points. Although, in general (in proofs), we usually
have to rely on existential theorems only.

Example 4.2. Find a separating or supporting hyperplane for the following sets and
points:

x1 = (−1,−1) K1 = {(x, y); x ≥ 0, y ≥ 0},
x2 = (3, 1) K2 = {(x, y); x2 + y2 < 10},
x3 = (3, 0, 0) K3 = {(x, y, z); x2 + y2 + z2 ≤ 9},
x4 = (0, 2, 0) K4 = {(x, y, z); x+ y + z ≤ 1}.

Solution: Use pictures and realize that γ is the normal vector of the separat-
ing/supporting hyperplane.
1. We start with the picture

x

y

1

-1

1-1

•x1

K1

For x1, K1 we can use γ = (1, 1) to construct the separating hyperplane, then

min
(x,y)∈K1

x+ y = 0 > −1− 1 = −2.

Note that other choices are also possible, in particular (γ1, γ2) 6= 0 with γ1, γ2 ≥ 0.
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2. Picture

x

y

−3 −2 −1 1 2 3

−3

−2

−1

1

2

3

x2
K2

Since x2 ∈ ∂(cl(K2)) (on the boundary of the closure) and K2 is a convex set, we are
going to construct the supporting hyperplane. We set γ = (−3,−1) and verify the
property

inf
(x,y)∈K2

−3x− y = −10 ≥ −3 · 3− 1 · 1 = −10.

3. Since x3 ∈ ∂K3 and K3 is a convex closed set, we are going to construct the
supporting hyperplane. We set γ = (1, 0, 0) and verify the property

min
(x,y,z)∈K3

x+ 0 · y + 0 · z = −3 < 3 = 3 + 0 + 0.

So we try γ = (−1, 0, 0):

min
(x,y,z)∈K3

−x+ 0 · y + 0 · z = −3 = −3 + 0 + 0,

which works.
4. Since x4 /∈ cl(K4) and K4 is a convex closed set, we can construct the separating
hyperplane using γ = (−1,−1,−1)

min
(x,y,z)∈K4

−x− y − z = −1 >= −2− 0− 0.

Example 4.3. Let K ⊆ Rn, K 6= ∅. Show that K is a closed convex set if and only if
it is an intersection of all closed half-spaces which contain K.

Hint: Show that if y /∈ K, then it is not contained in the intersection using the
theorem about separation of a point and a convex set. See Theorem 1.37 in Lecture
notes.

Example 4.4. Provide a description of the circle in R2 and ball in R3 as a intersection
of supporting halfspaces.
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Solution (R2 case): WLOG consider K = {(x1, x2) : x21 + x22 ≤ 1}. Then in each
point of the boundary ∂(K) we can construct the supporting hyperplane. In fact,
the point x ∈ ∂(K) already corresponds to the normal vector γ, i.e. the supporting
hyperplane is

Hx = {y ∈ R2 : xTy = c},
where the choice of c is obvious from the fact that x ∈ Hx ∩ K, i.e. c = 1. So, we
obtain

K =
⋂

x∈∂(K)

{y ∈ R2 : xTy ≤ 1}.

Prove the following theorem which gives a sufficient condition for proper separa-
bility of two convex sets.

Theorem 4.5. Let A,B ⊂ Rn be non-empty convex sets. If rint(A) ∩ rint(B) = ∅,
then A and B can be properly separated.

Hint: Separate set K = A − B and point 0. First, show that 0 /∈ rint(K). See
Theorem 1.45 in Lecture notes.

Example 4.6. Verify whether the following pairs of (convex ?) sets are properly or
strictly separable or not. If they are separable, suggest a possible value of γ and
verify the property.

A1 = {(x, y); y ≥ |x|}, B1 = {(x, y); 2y + x ≤ 0},
A2 = {(x, y); xy ≥ 1, x > 0}, B2 = {(x, y; x ≤ 0, y ≤ 0},
A3 = {(x, z); x+ y + z ≤ 1}, B3 = {(x, y, z); (x− 2)2 + (y − 2)2 + (z − 2)2 ≤ 1},
A4 = {(x, y, z); 0 ≤ x, y, z ≤ 1}, B4 = {(x, y, z); (x− 2)2 + (y − 2)2 + (z − 2)2 ≤ 3}.
A5 = {(x, y); e−x ≤ y}, B5 = {(x, y); −e−x ≥ y}.

Solution: Use general theorems and pictures.
1. We start with the picture

x

y

1

-1

1-1

A1

B1

Sets A1, B1 are properly separable using vector γ = (1, 2):

min
(x,y)∈A1

x+ 2y = 0 ≥ 0 = max
(x,y)∈B1

x+ 2y.

Note that the assumptions of general theorem about proper separability are fulfilled
(both sets are convex and int(A1) ∩ int(B1) = ∅.
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2. From a picture (that you can draw yourself), we can see that sets A2, B2 can
be strictly separated even though they do not fulfill the assumption of the general
theorem. We can use γ = (1, 1) and verify

min
(x,y)∈A2

x+ y = 2 > 0 = max
(x,y)∈B2

x+ y,

where the minimum is attained at (1,1) and maximum at (0,0).
3. If you use your spatial imagination or a picture, you can realize that A3 ∩B3 = ∅.
The assumptions of the theorem about strict separability are fulfilled and the sets
can be strictly separated using γ = (−1,−1,−1):

min
(x,y,z)∈A3

−x− y − z = −1 > −6 +
√

3 = max
(x,y,z)∈B3

−x− y − z.

The closest point from B3 to A3, where the maximum over B3 is attained, is (2 −√
3
3
, 2−

√
3
3
, 2−

√
3
3

).
4. In this case, you can realize that A4 ∩ B4 = (1, 1, 1). The assumptions of the
theorem about proper separability are fulfilled and the sets can be properly separated
using γ = (−1,−1,−1):

min
(x,y,z)∈A4

−x− y − z = −3 = max
(x,y,z)∈B4

−x− y − z.

5. This example is quite interesting, because both sets are closed convex and has no
intersection, but cannot be strictly separated: general theorem about strict separa-
bility requires that at least one set is compact which is not fulfilled here. The sets
can be properly separated using γ = (0, 1), i.e.

inf
(x,y)∈A5

0 · x+ y = 0 = sup
(x,y)∈B5

0 · x+ y.

4.1 Farkas theorem

Example 4.7. (*) Discuss the proof of the Farkas theorem.

Hint: Use an alternative formulation of the FT: Denote the columns of A by a•,i, i =
1, . . . , n. ThenAx = b has a nonnegative solution if and only if b ∈ pos({a•,1, . . . , a•,n}).

Example 4.8. Reformulate the Farkas theorem for the sets

M1 = {x : Ax ≥ b} ,
M2 = {x : Ax ≥ b, x ≥ 0} ,
M3 = {x : Ax ≤ b, x ≤ 0} ,
M4 = {x : Ax = b} .

Solution: Consider M1. We can transform the constraints to the standard form, i.e.
we use x = x+ − x−, x+, x− ≥ 0, and slack variables y ≥ 0 such that

A(x+ − x−)− Iy = b,
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i.e. we can set Ã = (A| − A| − I) and x̃T = (x+T |x−T |yT ) ≥ 0. Now we can apply
the Farkas theorem to

Ãx̃ = b, x̃ ≥ 0.

We can simplify ATu ≥ 0, −ATu ≥ 0, and −Iu ≥ 0 to ATu = 0 and u ≤ 0. The
modified Farkas theorem is:
Ax ≥ b has a solution if and only if for all u ≤ 0, ATu = 0 it holds bTu ≥ 0.

Example 4.9. Decide whether the system Ax = b has a non-negative solution, where

A =

(
2 1 −1 0
−3 2 0 4

)
, b =

(
2
6

)
.

Solution: The example is directly ready for the use of Farkas’ theorem. We will
therefore examine whether bTu ≥ 0 holds for (u1, u2) such that ATu ≥ 0. Let’s first
write down what AT ≥ 0 means.

2u1 −3u2 ≥ 0

u1 +2u2 ≥ 0

−u1 ≥ 0

4u2 ≥ 0

And now we will find out if bT ≥ 0 holds, we will modify the expression:

2u1 + 6u2 = 2 · (u1 + 2u2) + 2u2 ≥ 0.

The last inequality applies from the second and fourth assumptions equations, i.e.
the system has a non-negative solution.

Example 4.10. Use Farkas’ theorem to determine whether the set is nonempty:{
(x, y, z) ∈ R3 : 2x+ y − z ≤ 3, x+ 2y + 2z = 4, y ≥ 0, z ≥ 0

}
.

Solution: We convert the system into standard form by dividing x into positive and
negative parts (x = x+−x−, x+ ≥ 0, x− ≥ 0) and by adding a slip variable we convert
inequality into equality. Then we can use Farkas’ theorem as in the previous case.
Let’s write down the form of the matrix A and the vector b.

A =

(
2 −2 1 −1 1
1 −1 2 2 0

)
, b =

(
3
4

)
.

Now we proceed in the same way, we write down the equations of assumptions ATu ≥
0 and find the non-negativity of bTu.

2u1 +u2 ≥ 0

−2u1 −u2 ≥ 0

u1 +2u2 ≥ 0

−u1 +2u2 ≥ 0

u1 ≥ 0

3u1 + 4u2 = u1 + 2 · (u1 + 2u2) ≥ 0.

The last inequality holds from the third and fifth equations of assumptions, i.e. the
system has a non-negative solution and the set is non-empty.

18



5 Linear programming

5.1 Graphical approach

Example 5.1. Use graphical method to solve the following problem:

min 4x1 + 5x2

x1 + 4x2 ≥ 5,

3x1 + 2x2 ≥ 7,

x1, x2 ≥ 0.

Denote by M the set of feasible solutions. Modify the problem and discuss the optimal
solution

1.
min
x∈M

x1 + 4x2

2.
min
x∈M

x2

3.
min
x∈M ′

4x1 + 5x2,

where M ′ = M ∩ {x1 + x2 ≤ 1}
4.

max
x∈M

4x1 + 5x2

5.
max
x∈M ′′

4x1 + 5x2,

where M ′′ = M ∩ {x1 + x2 ≤ 6}

Solution.

x1

x2

0

1

2

3

4

5

6

0 1 2 3 4 5 6

19



We can conclude that the optimal solution is (1.8, 0.8).

1. The optimal solution is the line segment connecting points (1.8, 0.8) and (5, 0).

2. The optimal solution is the half line and (5, 0) + t(1, 0), t ≥ 0.

3. The problem is infeasible, the set of feasible solutions is empty.

4. The problem is unbounded.

5. The optimal solution is (0, 6).

5.2 Direct approach

Example 5.2. Reformulate the following linear programming problem in a standard
form:

max 2x1 − 4x2 − 5x3

s.t. − x1 + 2x2 − 3x3 ≤ 1,

4x1 − 5x2 − 6x3 ≥ −2,

7x1 + 8x2 − 9x3 = 3,

x1 ≥ 0, x2 ≤ 0, x3 ∈ R.

Solution. Use the split x3 = x+3 − x−3 , x+3 , x
−
3 ≥ 0, substitution x̃2 = −x2 and two

slack variables y1, y2 ≥ 0 together with the standard equality

max
x∈M

f(x) = −min
x∈M
−f(x)

to get the equivalent reformulation in the standard form

−min − (2x1 + 4x̃2 − 5x+3 + 5x−3 )

s.t. − x1 − 2x̃2 − 3x+3 + 3x−3 + y1 = 1,

4x1 + 5x̃2 − 6x+3 + 6x−3 − y2 = −2,

7x1 − 8x̃2 − 9x+3 + 9x−3 = 3,

x1, x̃2, x
+
3 , x

−
3 , y1, y2 ≥ 0.

Example 5.3. Derive the sets of extreme points and extreme directions for the convex
polyhedral set M defined by

−x1 + x2 ≤ 1,
x2 ≤ 3,
x1 ≥ 0, x2 ≥ 0.

Use

• the picture,

• the computational approach (direct method).
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Reformulate the set as a sum of a convex polyhedron and a convex polyhedral cone.
Use the representation to solve the linear programming problems

min
x∈M

2x1 − 3x2

and
min
x∈M
−3x1 + 2x2

.

Solution. Picture is left to readers. We will focus on the computational approach.
First, we transform the constraints into the standard (equality) form using nonnega-
tive slack variables2, i.e.

−x1 + x2 + x3 = 1,
x2 + x4 = 3,
x1 ≥ 0, x2 ≥ 0, x3 ≥ 0, x4 ≥ 0.

So we have matrix and rhs vector

A =

(
−1 1 1 0

0 1 0 1

)
, b =

(
1
3

)
.

Now, to get the extreme points we must solve all systems of linear equalities with
square 2× 2 regular submatrices of A and nonengative solutions, e.g. by solving(

−1 1
0 1

)(
x1
x2

)
=

(
1
3

)
,

we obtain (2, 3, 0, 0) where the elements corresponding to the omitted columns are
substituted by 0.

Similar approach can be used to get the extreme directions where we solve all
homogenous systems with rectangle 2×3 submatrices ofA and we look for nonnegative
solutions, e.g. by solving

(
−1 1 1

0 1 0

) x1
x2
x3

 =

(
0
0

)
,

we get (1, 0, 1, 0) where again the elements corresponding to the omitted columns are
set to 0.

After going through all possibilities, we obtain

ext(M) =




2
3
0
0

 ,


0
1
0
2

 ,


0
0
1
3


 , extd(M) =




1
0
1
0


 .

Then we have
M = conv(ext(M)) + pos(extd(M)).

2+ with ≤, − with ≥
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Compare the computed points and vectors with the ones obtained from the picture.

Set
f1(x) = 2x1 − 3x2, f2(x) = −3x1 + 2x2.

We apply the direct approach/method to solve the LP problems:

1. First, we evaluate the objective function(s) in all extreme points. For the first
objective f1 we obtain: -5, -3, 0. So the candidate for the optimal solution is
the extreme point (2,3,0,0). For the second objective f2 we obtain values: 0, 2,
0. So we have two candidates: (2,3,0,0) and (0,0,1,3).

2. Now, we verify the optimality condition by evaluating the objectives in all ex-
treme directions which must be nonnegative. We obtain f1(1, 0, 1, 0) = 2 ≥ 0
and f2(1, 0, 1, 0) = −3 < 0, i.e. for the first objective we verified the optimality
condition and the point (2,3,0,0) is optimal solution with optimal value equal to
-5, whereas the problem with objective function f2 is unbounded from below in
the direction (1,0,1,0).

Example 5.4. Using the direct approach solve the following LP problem:

min 2x1 + 2x2 − x3 − 2x4

s.t. 2x1 − x2 − x3 = −2

− x1 + 2x2 − x4 = −1,

x1, x2, x3, x4 ≥ 0.

Solution. We can obtain

ext(M) =




1
0
4
0

 ,


0
2
0
5

 ,


0
0
2
1


 , extd(M) =




2
1
3
0

 ,


1
2
0
3


 .

The values of the objective function in the extreme point are -2, -6, -4, and in the
extreme directions 3, 0. Note that the objective function is constant in the direction
(1,2,0,3). This implies that the optimal solution exists and is attained on the whole
half-line (0, 2, 0, 5) + t(1, 2, 0, 3), t ≥ 0 with optimal value -6.

5.3 Duality

Example 5.5. Formulate the dual problem to the following linear programming prob-
lem:

max 2x1 − 4x2 − 5x3

s.t. − x1 + 2x2 − 3x3 ≤ 1,

4x1 − 5x2 − 6x3 ≥ −2,

7x1 + 8x2 − 9x3 = 3,

x1 ≥ 0, x2 ≤ 0, x3 ∈ R.
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x1 x2 x3
≥ 0 ≤ 0 ∈ R
-1 2 -3 ≤ 1
4 -5 -6 ≥ -2
7 8 -9 = 3

2 -4 -5 max

Solution: The initial LP problem (P) can be filled to the following table

The table can be used to formulate the dual problem

x1 x2 x3
≥ 0 ≤ 0 ∈ R

y1 ≥ 0 -1 2 -3 ≤ 1
y2 ≤ 0 4 -5 -6 ≥ -2
y3 ∈ R 7 8 -9 = 3

≥ ≤ = min
2 -4 -5 max

Now, we can formulate the dual problem (D)

min y1 − 2y2 + 3y3

s.t. − y1 + 4y2 + 7y3 ≥ 2,

2y1 − 5y2 + 8y3 ≤ −4,

− 3y1 − 6y2 − 9y3 = −5,

y1 ≥ 0, y2 ≤ 0, y3 ∈ R.

Example 5.6. Apply the graphical method to solve the dual problem to the following
problem

min −6x1 + 3x3 + 5x4
s.t. 3x1 + x2 − x3 − x4 = 3,

2x1 − x2 + 2x3 + 3x4 ≤ 2,
x1 ≥ 0, x2 ≥ 0, x3 ≥ 0, x4 ≥ 0.

Derive the optimal solution(s) of the primal problem using the complementarity con-
ditions. Identify the extreme points and directions of the dual problem.

Discuss the solution in the case when the right-hand side vector is changed to
(−3,−2) or the constraint on variable x4 to x4 ≤ 0.

Solution: We can derive the dual problem using the table. First the primal problem
is coded, then the dual problem is derived:
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x1 x2 x3 x4
≥ 0 ≥ 0 ≥ 0 ≥ 0
3 1 -1 -1 = 3
2 -1 2 3 ≤ 2

-6 0 3 5 min

x1 x2 x3 x4
≥ 0 ≥ 0 ≥ 0 ≥ 0

y1 ∈ R 3 1 -1 -1 = 3
y2 ≤ 0 2 -1 2 3 ≤ 2

≤ ≤ ≤ ≤ max
-6 0 3 5 min

We can formulate the dual problem:

max 3y1 + 2y2

s.t. 3y1 + 2y2 ≤ −6,

y1 − y2 ≤ 0,

− y1 + 2y2 ≤ 3,

− y1 + 3y2 ≤ 5,

y2 ≤ 0.

As a solution we obtain line segment connecting two extreme points: (−2, 0), (−6/5,−6/5),
which can be written as

(y1, y2) ∈

{(
t,−3− 3

2
t

)
, t ∈

[
−2,−6

5

]}
.

The optimal value is equal to −6. Note that there is another extreme point (−3, 0)
of the feasibility set and the (non-normalized) extreme directions are: (−1,−1),
(−2,−1). So the set is polyhedral, but not a polyhedron.

Now, using the complementarity conditions

x1(3y1 + 2y2 + 6) = 0,

x2(y1 − y2) = 0,

x3(−y1 + 2y2 − 3) = 0,

x4(−y1 + 3y2 − 5) = 0,

we obtain that x2 = x3 = x4 = 0. Using the second set of complementarity conditions

y1(3x1 + x2 − x3 − x4 − 3) = 0

y2(2x1 − x2 + 2x3 + 3x4 − 2) = 0,

we have x1 = 1 with optimal solution of the primal problem equal to −6, which
corresponds to the strong duality.

Changing the right-hand side to (−3,−2) leads to a dual problem which is un-
bounded, which means that the primal problem is infeasible.

Changing the constraint x4 ≤ 0 leads to a dual problem which is infeasible, which
means that the primal problem is unbounded.
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Example 5.7. Apply the graphical method to solve the dual problem to the following
problem

min 5x2 + 6x3 + 2x4

s.t. x1 + x2 + 2x3 + x4 = 2,

x1 − x2 − x3 ≤ 1,

x1 ≥ 0, x2 ≥ 0, x3 ≥ 0, x4 ≥ 0.

Derive the optimal solution(s) of the primal problem using the complementarity con-
ditions.

5.4 Simplex algorithm

Example 5.8. Solve the example by the simplex method:

min 2x1 −x2
s.t. −x1 +x2 ≤ 1

x2 ≤ 3

x1, x2 ≥ 0

Change the objective function to −3x1 + 2x2.

Solution: By adding slack variables, we convert the problem to the standard form:

min 2x1 −x2
s.t. −x1 +x2 + x3 = 1

x2 + x4 = 3

x1, x2, x3, x4 ≥ 0

We select the variables x3 and x4 as bases and write them into the simplex table,
which has the following form for the problem in the standard form and basis B:

cT

xT

cB xB B−1b B−1A
cTBB

−1b cTBB
−1A− cT

In our case, B is a unit matrix, which enables the expressions of the formulea:

2 -1 0 0
x1 x2 x3 x4

0 x3 1 -1 1 1 0
0 x4 3 0 1 0 1

0 -2 1 0 0

We see that we have a feasible basic solution B−1b = (1, 3) ≥ 0, but the optimality
condition cTBB

−1A−cT = (−2, 1, 0, 0) ≤ 0 is not satisfied, so we proceed to the simplex
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iteration. The optimality criterion is violated for the variable x2, so we include it in
the base. Now we look for components on the shares of the current solution (1, 3) and
the column corresponding to the variable we are currently adding in the constraint
matrix (1, 1). We consider the ratio only if we are dividing by a positive number. We
get ratios of (1, 3). We select the minimum ratio and eliminate the corresponding
variable x3 from the basis. Now, using Gauss-Jordan elimination, it adjusts the
constraint matrix together with the left side to such a form that B is again a unit
matrix.

2 -1 0 0
x1 x2 x3 x4

-1 x2 1 -1 1 1 0
0 x4 2 1 0 -1 1

-1 -1 0 -1 0

We now have a feasible basic solution that meets the optimality condition. So we
found the optimal solution (x1, x2, x3, x4) = (0, 1, 0, 2) with optimal value -1.

If we change the objective function, we obtain:

-3 2 0 0
x1 x2 x3 x4

0 x3 1 −1 1 1 0

0 x4 3 0 1 0 1

0 3 -2 0 0

Obviously, the optimality condition is not fulfilled and x1 should be included
into the basis. However, the corresponding column does not contain any positive
number, hence there is no candidate to be included into the basis. This means that
the problem is unbounded from below. Moreover, we can identify the direction of
decrease (1,0,1,0).

Example 5.9. Solve the LP problem using the simplex method

min 3x1 − x2 + 6x3
s.t. x1 + 3x2 − 2x3 ≤ 6

−2x1 + x3 ≤ 2
x1 ≥ 0

x2 ≥ 0
x3 ≥ 0

Solution: First we add the slack variables and create tthe simplex table.

3 -1 6 0 0
x1 x2 x3 x4 x5

0 x4 6 1 3 -2 1 0
0 x5 2 -2 0 1 0 1

0 -3 1 -6 0 0
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We see that we must add the variable x2 to the base. Now, when we calculate the
ratios, only one comes into consideration, because there is only one positive number
in the column in the constraint matrix corresponding to x2. So we eliminate x4 from
the base.

3 -1 6 0 0
x1 x2 x3 x4 x5

-1 x2 2 1
3

1 −2
3

1
3

0
0 x5 2 -2 0 1 0 1

-2 −10
3

0 −16
3
−1

3
0

The feasibility and optimality conditions are met, so we have the optimal solution
(0, 2, 0, 0, 2) with optimal value -2.

Example 5.10. Using two-phase simplex algorithm solve the LP problem:

min 6x1 − 2x2 + 8x3
s.t. x1 − 2x2 ≤ −6

x1 − 4x2 − 2x3 ≤ 8
− 2x2 + x3 ≥ 7

x1 ≥ 0
x2 ≥ 0

x3 ≥ 0.

Discuss the steps if we change the objective function to

6x1 − 2x2 − 8x3.

Solution: Now we cannot use the same approach, adding slack variables does not
give us a unit matrix like in the previous cases. We can multiply the inequalities by
-1 to get the identity matrix, but then we will not have an initial feasible solution,
i.e., b ≥ 0 does not hold. Therefore, we will use a two-phase simplex, where in the
first phase we are looking for a feasible basis. Let’s start by tabulating the problem,
adding slack variables, and adjusting to make the right-hand side non-negative.

6 -2 -8 0 0 0
x1 x2 x3 x4 x5 x6

? ? 6 -1 2 0 -1 0 0

? ? 8 1 -4 -2 0 1 0
? ? 7 0 -2 1 0 0 -1

? ? ? ? ? ? ?

Thus, the unit matrix cannot be created from the columns of the constraint ma-
trix. Therefore, we add as many new variables as necessary to create a unit matrix.
One column is already in the canonical form, so it is enough to add 2 variables z1 and
z2 (and thereby create the remaining 2 canonical columns) and solve the auxiliary
problem, where all coefficients in the objective function for the variables x and for
the variables z. We set the coefficient to 1. Thus, we minimize the sum of z with the
goal to eliminate them.

Now, we can solve the LP problem using the simplex.
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0 0 0 0 0 0 1 1
x1 x2 x3 x4 x5 x6 z1 z2

1 z1 6 -1 2 0 -1 0 0 1 0
0 x5 8 1 -4 -2 0 1 0 0 0

1 z2 7 0 -2 1 0 0 -1 0 1
13 -1 0 1 -1 0 -1 0 0

1 z1 6 -1 2 0 -1 0 0 1 0
0 x5 22 1 -8 0 0 1 -2 0 2
0 x3 7 0 -2 1 0 0 -1 0 1

6 -1 2 0 -1 0 0 0 -1

0 x2 3 -1/2 1 0 -1/2 0 0 1/2 0
0 x5 46 -3 0 0 -4 1 -2 4 2
0 x3 13 -1 0 1 -1 0 -1 1 1

0 0 0 0 0 0 0 -1 -1

• We add x3 and remove z2 from the basis.

• We add x2 and remove z1.

We have now obtained a feasible solution for the original problem, so we get rid of
the auxiliary variables z and solve the original problem.

6 -2 8 0 0 0
x1 x2 x3 x4 x5 x6

-2 x2 3 -1/2 1 0 -1/2 0 0
0 x5 46 -3 0 0 -4 1 -2
8 x3 13 -1 0 1 -1 0 -1

98 -13 0 0 -7 0 -8

The optimality condition is satisfied. Hence, we have obtained an optimal solution
(without additional iterations):

(x̂1, x̂2, x̂3, x̂4, x̂5, x̂6) = (0, 3, 13, 0, 46, 0)

with optimal value -110.

6 -2 −8 0 0 0
x1 x2 x3 x4 x5 x6

-2 x2 3 -1/2 1 0 -1/2 0 0
0 x5 46 -3 0 0 -4 1 -2
-8 x3 13 -1 0 1 -1 0 -1

-110 3 0 0 9 0 8

If we change the objective function, i.e. set c3 = −8, the optimality condition
is not satisfied, for example, for x1, and the column belonging to x1 has no positive
component, so the problem is unbounded from below. We can identify the direction
in which the objective function decreases:

(1, 1/2, 1, 0, 3, 0).
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6 Convex sets and functions

Repeat the rules for estimating convexity of functions and sets:

• intersection of convex sets is a convex set,

• level sets of convex functions are convex sets,

• nonnegative combination of convex functions is a convex function,

• maximum of convex functions is a convex function,

• function composition when

– inner function is linear and outer convex,

– inner function is convex and outer convex and nondecreasing

is a convex function,

• once differentiable univariate function is convex iff the first order derivative is
nondecreasing,

• twice differentiable univariate function is convex iff the second order derivative
is nonnegative,

• twice continuously differentiable multivariate function is convex iff Hessian ma-
trix is positive semidefinite.

Definition 6.1. For a function f : Rn → R∗, we define its epigraph

epi(f) =
{

(x, ν) ∈ Rn+1 : f(x) ≤ ν
}
.

Example 6.2. Prove the equivalence between the possible definitions of convex func-
tions f : Rn → R∗:

1. epi(f) is a convex set,

2. Dom(f) is a convex set and for all x, y ∈ Dom(f) and λ ∈ (0, 1) we have

f(λx+ (1− λ)y) ≤ λf(x) + (1− λ)f(y).

Solution: Let the epigraph be convex, x, y ∈ Dom(f), and choose λ ∈ (0, 1). We
know that (x, f(x)) ∈ epi(f) as well as (y, f(y)) ∈ epi(f). Since the epigraph is a
convex set, we know that the convex combination of the points belongs also to the
epi, i.e.

λ(x, f(x)) + (1− λ)(y, f(y)) ∈ epi(f).

This means that
f(λx+ (1− λ)y) ≤ λf(x) + (1− λ)f(y),

which we wanted to show.
Now let 2. is valid. Choose λ ∈ (0, 1), and (x, ν), (y, η) ∈ epi(f), i.e. ν ≥ f(x) and
η ≥ f(y). From 2. we know that

f(λx+ (1− λ)y) ≤ λf(x) + (1− λ)f(y) ≤ λν + (1− λ)η,

i.e. (
λx+ (1− λ)y, λν + (1− λ)η

)
∈ epi(f),

and we can conclude that the epigraph is a convex set.
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Remark 6.3. You can restrict domain of any function and define its outside the domain
using +∞. This influences also the epigraph. For example consider f(x) = x3 on R,
and g(x) = x3 on R+ and g(x) = +∞ for x ∈ (−∞, 0). Realize how their epigraphs
look. Then g is obviously convex, but f not.

Example 6.4. Decide whether the following sets are convex:

M1 =
{

(x, y) ∈ R2
+ : ye−x − x ≥ 1

}
, (6.1)

M2 =
{

(x, y) ∈ R2 : x ≥ 2 + y2
}
, (6.2)

M3 =
{

(x, y) ∈ R2 : x2 + y log y4 ≤ 139, y ≥ 2
}
, (6.3)

M4 =
{

(x, y) ∈ R2 : log x− y2 ≥ 1, x ≥ 1, y ≥ 0
}
, (6.4)

M5 =
{

(x, y) ∈ R2 : (x3 + ey) log(x3 + ey) ≤ 49, x ≥ 0, y ≥ 0
}
, (6.5)

M6 =
{

(x, y) ∈ R2 : x log x+ xy ≥ 0, x ≥ 1
}
, (6.6)

M7 =
{

(x, y) ∈ R2 : 1− xy ≤ 0, x ≥ 0
}
, (6.7)

M8 =

{
(x, y, z) ∈ R3 :

1

2
(x2 + y2 + z2) + yz ≤ 1, x ≥ 0, y ≥ 0

}
, (6.8)

M9 =
{

(x, y, z) ∈ R2 : 3x− 2y + z = 1
}
. (6.9)

Solution:

2. M2 is an epigraph of function f(y) = 2 + y2, which is obviously convex, so a
convex set.

3. We can show that the function which defines the set is convex, i.e.

f(x, y) = x2 + y log y4 = x2 + 4y log y on R× [2,∞).

Function x2 is obviously convex and g(y) := y log y is convex on (0,∞) – we can
verify it using derivatives

g′(y) = log y + 1, g′′(y) =
1

y
.

So M3 is a level set of the convex function.

7. We cannot use the level set approach because the function is not convex, but
from the picture it is obvious that the set M7 is a convex set.

9. M9 is a hyperplane, thus convex set.

Example 6.5. Establish conditions under which the following sets are convex:

M10 =
{
x ∈ Rn : α ≤ aTx ≤ β

}
, for some a ∈ Rn, α, β ∈ R, (6.10)

M11 =
{
x ∈ Rn :

∥∥x− x0∥∥ ≤ ‖x− y‖ , ∀y ∈ S} , for some S ⊆ Rn, (6.11)

M12 =
{
x ∈ Rn : xTy ≤ 1, ∀y ∈ S

}
, for some S ⊆ Rn. (6.12)

Solution:
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12. If S = ∅, then we have no condition and M12 = Rn, which is obviously convex.
Now consider S 6= ∅, then we can use the definition: let λ ∈ (0, 1) and x1, x2 ∈
M12, which means that

xT1 y ≤ 1 and xT2 y ≤ 1, ∀y ∈ S.

We can obtain

(λx1 + (1− λ)x2)
Ty = λxT1 y + (1− λ)xT2 y ≤ λ+ (1− λ) = 1, ∀y ∈ S,

which implies that λx1 + (1 − λ)x2 ∈ M12 and therefore the considered set is
convex. Note that no restrictions (such as convexity) on the set S are necessary.

Example 6.6. Verify if the following functions are convex:

f1(x, y) = x2y2 +
x

y
, x > 0, y > 0, (6.13)

f2(x, y) = xy, (6.14)

f3(x, y) = log(ex + ey)− log x, x > 0, (6.15)

f4(x, y) = exp{x2 + e−y}, x > 0, y > 0, (6.16)

f5(x, y) = − log(x+ y), x > 0, y > 0, (6.17)

f6(x, y) =
√
ex + e−y, (6.18)

f7(x, y) = x3 + 2y2 + 3x, (6.19)

f8(x, y) = − log(cx+ dy), c, d ∈ R, (6.20)

f9(x, y) =
x2

y
, y > 0, (6.21)

f10(x, y) = xy log xy, x > 0, y > 0, (6.22)

f11(x, y) = |x+ y|, (6.23)

f12(x) = sup
y∈Dom(f)

{xTy − f(y)} = f ∗(x), f : Rn → R, (6.24)

f13(x) = ‖Ax− b‖22 . (6.25)

Solution:
6. Consider f6(x, y) =

√
ex + e−y. The first order partial derivatives are equal to

∂f6
∂x

(x, y) =
ex

2
√
ex + e−y

,

∂f6
∂y

(x, y) =
−e−y

2
√
ex + e−y

,

and the second order derivatives are

∂2f6
∂x2

(x, y) =
e2x + 2ex−y

4(ex + e−y)
3
2

,

∂2f6
∂y2

(x, y) =
e−2y + 2ex−y

4(ex + e−y)
3
2

,

∂2f6
∂y∂x

(x, y) =
∂2f6
∂x∂y

(x, y) =
ex−y

4(ex + e−y)
3
2
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To verify that the Hessian matrix is positive definite, it is sufficient to look on the
numerators, because the common denominator 4(ex + e−y)

3
2 is always positive. Ob-

viously e2x + 2ex−y is positive, thus it remains to verify that

(e2x + 2ex−y)(e−2y + 2ex−y)− (ex−y)2 > 0.

11. Inner function x + y is linear and the outer function | · | is convex, which is
sufficient to prove the convexity of f11.
13. Realize that

f13(x) = ‖Ax− b‖22 = (Ax− b)T (Ax− b) = xTATAx− 2bTAx+ bT b.

The first term is convex because the matrix ATA is positive semidefinite, bacause

xTATAx = (Ax)TAx =
n∑
i=1

(aTi·x)2 ≥ 0,

the second term is linear (affine) and the last one is a constant. So the function as a
sum of two convex functions (and a constant) is convex.

Example 6.7. Show that

f14(x) = −
n∑
i=1

ln(bi − aTi x). (6.26)

is convex on its domain dom(f14) = {x ∈ Rn : aTi x < bi, i = 1, . . . , n}.

Example 6.8. Let f(x, y) : Rn+m → R be a convex function (jointly in x and y) and
C ⊆ Rm be a nonempty convex set. Show that

g(x) = inf
y∈C

f(x, y). (6.27)

is convex.

Solution: Consider λ ∈ (0, 1) and points x1, x2 from the domain of the function g,
i.e. for each ε > 0 there exist y1, y2 ∈ C such that

g(x1) + ε ≥ f(x1, y1),

g(x2) + ε ≥ f(x2, y2),

because the infimum need not to be attained but the function value must be arbitrary
close. Then, we can obtain the following relations

f(λx1+(1−λ)x2, λy1+(1−λ)y2) ≤ λf(x1, y1)+(1−λ)f(x2, y2) ≤ λg(x1)+(1−λ)g(x2)+ε.

It remain to show that

g(λx1 + (1− λ)x2) ≤ f(λx1 + (1− λ)x2, λy1 + (1− λ)y2),

which follows from the fact that C is a convex set, therefore the convex combination
of y1, y2 is feasible, i.e.

λy1 + (1− λ)y2 ∈ C.
Remind that g is defined as the infimum of f over C. By letting ε → 0+ and
combining the above inequalities, we can conclude that g is convex on its domain.
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Example 6.9. (Vector composition) Let gi : Rn → R, i = 1, . . . , k and h : Rk → R be
convex functions. Moreover let h be nondecreasing in each argument. Then

f(x) = h
(
g1(x), . . . , gk(x)

)
. (6.28)

is convex.
Apply to

f(x) = log

(
k∑
i=1

egi(x)

)
,

where gi are convex.
Hint: the first part can be verified using the definition of convexity, in the sec-
ond part compute the Hessian matrix H(x) and use the Cauchy-Schwarz inequality
(aTa)(bT b) ≥ (aT b)2 to verify that vTH(x)v ≥ 0 for all v ∈ Rk.

Solution: We can prove the convexity using the definition and the assumed proper-
ties. Consider x1, x2 ∈ Rn and λ ∈ (0, 1), then

f(λx1 + (1− λ)x2) = h
(
g1(λx1 + (1− λ)x2), . . . , gk(λx1 + (1− λ)x2)

)
≤ h

(
λg1(x1) + (1− λ)g1(x2), . . . , λgk(x1) + (1− λ)gk(x2)

)
≤ λh

(
g1(x1), . . . , gk(x1)

)
+ (1− λ)h

(
g1(x2), . . . , gk(x2)

)
= λf(x1) + (1− λ)f(x2),

where the first inequality follows from that g1, . . . , gk are convex and h is nondecreas-
ing, the second one from the convexity of h.

Now, consider the function

h(z) = log

(
k∑
i=1

ezi

)
.

Obviously it is nondecreasing in each argument. We can show that it is also convex.
We compute its second order partial derivatives

∂2h

∂z2j
(z) =

ezj(
∑k

i=1 e
zi)− ezjezj

(
∑k

i=1 e
zi)2

, j = 1, . . . , k,

∂2h

∂zj∂zl
(z) =

−ezjezl

(
∑k

i=1 e
zi)2

, j 6= l.

If we use the notation y = (ez1 , . . . , ezk)T and I = (1, . . . , 1)T ∈ Rk, we can write the
Hessian matrix in the form

Hh(y) =
1

(ITy)2
(
diag(y)(ITy)− yyT

)
,

where ITy =
∑k

i=1 yi =
∑k

i=1 e
zi and diag(y) denotes the diagonal matrix with ele-

ments y. We would like to verify that vTHh(y)v ≥ 0 for arbitrary v ∈ Rk. We can
compute

vTHh(y)v =
(
∑k

i=1 yiv
2
i )(
∑k

i=1 yi)− (
∑k

i=1 yivi)
2

(
∑k

i=1 yi)
2

.
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By setting ai =
√
yivi and bi =

√
yi and using the Cauchy-Schwarz inequality in the

form (aTa)(bT b)− (aT b)2 ≥ 0, we can obtain that the numerator is nonnegative, i.e.
vTHh(y)v ≥ 0.

Example 6.10. (*) Verify that the geometric mean is concave3:

f(x) =

(
n∏
i=1

xi

)1/n

, x ∈ (0,∞)n. (6.29)

Hint: compute the Hessian matrix and use the Cauchy-Schwarz inequality (aTa)(bT b) ≥
(aT b)2.

6.1 Subdifferentiability and subgradient

From Introduction to optimization (or similar course), you should remember the
following property which holds for any differentiable convex function f : X → R,
X ⊆ Rn:

∀x, y ∈ X f(y)− f(x) ≥ 〈∇f(x), y − x〉 .

This property can be generalized for nondifferentiable convex function by the notation
of subdifferentiability. Any subgradient a ∈ Rn of function f at x ∈ X fulfills

f(y)− f(x) ≥ 〈a, y − x〉 = aT (y − x) ∀y ∈ X.

Set of all subgradients at x is called subdifferential of f at x and denoted by ∂f(x).

Optimality condition
0 ∈ ∂f(x∗)

is sufficient for x∗ ∈ X being a global minimum of convex function f .

Example 6.11. Let f : Rn → R be a convex function. Then, a is a subgradient of f at
x if and only if (a,−1) supports epi(f) at (x, f(x)).

Solution: Apply the definition of the supporting hyperplane to an epigraph, i.e. use
γ = (a,−1):

max
(y,z)∈epi(f)

aTy − z ≤ aTx− f(x).

Now, realize that (y, f(y)) ∈ epi(f) and f(y) is the smallest value of z leading to

∀y ∈ dom(f) aTy − f(y) ≤ aTx− f(x).

Finally, it is sufficient to reorganize the formula to get the definition of subgradient

∀y ∈ dom(f) f(y)− f(x) ≥ aTy − aTx.

Example 6.12. (*) Consider (do not necessarily prove, rather think about) the fol-
lowing properties of subgradient:

3f is concave ⇔ −f is convex.
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1. if f is convex, then ∂f(x) 6= ∅ for all x ∈ rint domf .

2. if f is convex and differentiable, then ∂f(x) = {∇f(x)}.
3. if ∂f(x) = {g} (is singleton), then g = ∇f(x).

4. ∂f(x) is a closed convex set.

Example 6.13. Derive the subdifferential for the following functions:

f1(x) = |x|,
f2(x) = x2 if x ≤ −1,

−x if x ∈ [−1, 0],
x2 if x ≥ 0,

f3(x, y) = |x+ y| at (0, 0),
f4(x) = max{x, x2}, x ∈ R.

Solution:
1. The function f1 is convex and nondifferentiable at x = 0. If we write the definition
of subgradient in that point

|x| − |0| ≥ a(x− 0),

we can see that the possible values of a are in [−1, 1]. In all other points, the
subgradient corresponds to the derivative. So we have

∂f1(x) = {−1} if x ∈ (−∞, 0),
[−1, 1] if x = 0,
{1} if x ∈ (0,∞).

2. We can use the plot of f2

x

y

−3 −2 −1 1 2 3

We can see that the function is differentiable almost everywhere with the exception
of two points x ∈ {−1, 0}, i.e. we have

∂f2(x) = {2x} if x ∈ (−∞,−1),
[−2,−1] if x = −1,
{−1} if x ∈ (−1, 0),
[−1,−0] if x = 0,
{2x} if x ∈ (0,∞).
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Note that ∂f2(0) = [f ′2−(0), f ′2+(0)], i.e. it correspond to the interval bounded by
one-sided derivatives.

3. We can start with the definition and by elaborating possible values we get the
explicit formula for ∂f3(0, 0), i.e.

|x+ y| − |0 + 0| ≥ a1(x− 0) + a2(y − 0), (x, y) ∈ R2,

or simply
|x+ y| ≥ a1x+ a2y, (x, y) ∈ R2.

Obviously a1, a2 ∈ [−1, 1], otherwise we will get a contradiction immediately (take,
e.g., (x, y) = (1, 0)). Now consider the case a1 6= a2, WLOG a1 > a2. Consider x > 0
and set y = −x. Then we have

0 = |x− x| < a1x− a2x = x(a1 − a2) > 0,

which is a contradiction with the definition of subgradient. We can conclude that

∂f3(0, 0) = {(a, a) : a ∈ [−1, 1]}.

4. We can see that the function f4 is differentiable almost everywhere with the
exception of two points x ∈ {0, 1}, i.e. we have

∂f4(x) = {2x} if x ∈ (−∞, 0),
[0, 1] if x = 0,
{1} if x ∈ (0, 1),
[1, 2] if x = 1,
{2x} if x ∈ (1,∞).

Lemma 6.14. Let f1, . . . , fk : Rn → R be convex functions and let

f(x) := f1(x) + · · ·+ fk(x).

Then it holds
∂f1(x) + · · ·+ ∂fk(x) ⊆ ∂f(x).

Solution: Let a1 ∈ ∂f1(x), . . . , ak ∈ ∂fk(x). We would like to show that

a1 + · · ·+ ak ∈ ∂f(x).

We can the definition of subgradient: Consider y ∈ Rn and write

f(y)− f(x) =
k∑
i=1

fi(y)−
k∑
i=1

fi(x)

=
k∑
i=1

fi(y)− fi(x)

≥
k∑
i=1

aTi (y − x)

=

(
k∑
i=1

ai

)T

(y − x),

which confirms that
∑k

i=1 ai ∈ ∂f(x).
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7 Nonlinear programming problems: Karush–Kuhn–

Tucker Optimality conditions

7.1 A few pieces of the theory

We emphasize that this section contains just a basic summary and we refer the readers
to the lecture notes for formal definitions and propositions.

Consider a nonlinear programming problem with inequality and equality
constraints:

min f(x)

s.t. gi(x) ≤ 0, i = 1, . . . ,m,

hj(x) = 0, j = 1, . . . , l,

(7.1)

where f, gi, hj : Rn → R are differentiable functions. We denote by M the set of
feasible solutions.

We say that the problem is convex if functions f , gi,∀i are convex and hj,∀j
are affine.

Define the Lagrange function by

L(x, u, v) = f(x) +
m∑
i=1

uigi(x) +
l∑

j=1

vjhj(x), ui ≥ 0. (7.2)

The Karush–Kuhn–Tucker optimality conditions are then (feasibility, comple-
mentarity and optimality):

i) gi(x) ≤ 0, i = 1, . . . ,m, hj(x) = 0, j = 1, . . . , l,

ii) uigi(x) = 0, ui ≥ 0, i = 1, . . . ,m,

iii) ∇xL(x, u, v) = 0,

(7.3)

Any point (x, u, v) which fulfills the above conditions is called a KKT point.

If a Constraint Qualification (CQ) condition is fulfilled, then the KKT conditions
are necessary for local optimality of a point. Basic CQ conditions are:

• Slater CQ: ∃x̃ ∈ M such that gi(x̃) < 0 for all i and the gradients ∇xhj(x̃),
j = 1, . . . , l are linearly independent.

• Linear independence CQ at x̂ ∈M : all gradients

∇xgi(x̂), i ∈ Ig(x̂), ∇xhj(x̂), j = 1, . . . , l

are linearly independent.

These conditions are quite strong and are sufficient for weaker CQ conditions, e.g.
the Kuhn–Tucker condition (Mangasarian–Fromovitz CQ, Abadie CQ, ...).

To summarize, we are going to practice the following relations:
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1. KKT point and convex problem → global optimality at x.

2. Local optimality at x and a constraint qualification (CQ) condition → ∃(u, v)
such that (x, u, v) is a KKT point.

7.2 Karush–Kuhn–Tucker optimality conditions

Example 7.1. Consider the nonlinear programming problem

min (x1 − 4)2 + (x2 − 6)2

s.t. x21 ≤ x2,

x2 ≤ 4.

Compute the Lagrange multipliers at point (2, 4).

Solution: Define the Lagrange function

L(x1, x2, u1, u2) = (x1 − 4)2 + (x2 − 6)2 + u1(x
2
1 − x2) + u2(x2 − 4), u1,2 ≥ 0.

Write the KKT optimality conditions:

i) feasibility,

ii) complementarity

u1(x
2
1 − x2) = 0, u2(x2 − 4) = 0, u1,2 ≥ 0,

iii) optimality
∂L

∂x1
= 2(x1 − 4) + 2u1x1 = 0,

∂L

∂x2
= 2(x2 − 6)− u1 + u2 = 0.

Now, consider point (2, 4) and compute the Lagrange multipliers. Since both con-
straints are active, i.e. Ig(2, 4) = {1, 2}, we must use the optimality iii) and we
get

− 4 + 4u1 = 0,

− 4− u1 + u2 = 0,

and obtain u1 = 1 ≥ 0 and u2 = 5 ≥ 0. We have obtained KKT point (2, 4, 1, 5)
and (2, 4) is a global solution, because the problem is convex (the objective function
is a sum of two one-dimensional quadratic functions, the first constraint is a differ-
ence of one-dimensional quadratic and linear function, the second constraint is linear).

Example 7.2. (*) Consider the nonlinear programming problem

min (x1 − 3)2 + (x2 − 2)2

s.t. x21 + x22 ≤ 5,

x1 + x2 ≤ 3,

x1 ≥ 0, x2 ≥ 0,

Compute the Lagrange multipliers at point (2,1).
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Example 7.3. Using the KKT conditions find the closest point to (0,0) in the set
defined by

M = {x ∈ R2 : x1 + x2 ≥ 4, 2x1 + x2 ≥ 5}.
Can several points (solutions) exist?

Solution: We formulate a nonlinear programming problem using the Euclidean dis-
tance in the objective4:

min x21 + x22
s.t. − x1 − x2 + 4 ≤ 0,

− 2x1 − x2 + 5 ≤ 0.

The problem is obviously convex (sum of one-dimensional quadratic functions in the
objective, linear constraints). We can write the Lagrange function

L(x1, x2, u1, u2) = x21 + x22 + u1(−x1 − x2 + 4) + u2(−2x1 − x2 + 5), u1, u2 ≥ 0.

Derive the KKT conditions

i) feasibility,

ii) u1(−x1 − x2 + 4) = 0, u1 ≥ 0,

u2(−2x1 − x2 + 5) = 0, u2 ≥ 0,

iii)
∂L

∂x1
= 2x1 − u1 − 2u2 = 0,

∂L

∂x2
= 2x2 − u1 − u2 = 0.

(7.4)

Now, we will try to find the KKT point by analyzing the optimality conditions, where
we proceed according to the complementarity conditions:
1. Set u1 = 0, u2 = 0: We have from iii) that x1 = 0, x2 = 0 which is not feasible
point.
2. Set x1 + x2 = 4, u2 = 0: Together with iii) we solve

2x1 − u1 = 0,

2x2 − u1 = 0,

x1 + x2 = 4.

(7.5)

We obtain x1 = 2, x2 = 2, u1 = 4 > 0, i.e. we have KKT point (2, 2, 4, 0).
3. Set u1 = 0, 2x1 + x2 = 5: Solve

2x1 − 2u2 = 0,

2x2 − u2 = 0,

2x1 + x2 = 5.

(7.6)

We get x1 = 2, x2 = 1, u2 = 2, which is not feasible point.
4. Set x1 + x2 = 4, 2x1 + x2 = 5: We get x1 = 1, x2 = 3 and compute the Lagrange
multipliers by solving

u1 + 2u2 = 2,

u1 + u2 = 6.
(7.7)

4The square root can be omitted.
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We obtain u1 = 10, u2 = −4 < 0, i.e. the Lagrange multipliers are not nonnegative
and (1,3,10,-4) is not KKT point.

Since the set M is convex, the closest point corresponding to the projection (2, 2)
must be unique.

Example 7.4. Verify that the point (x1, x2) = (4
5
, 8
5
) is a local/global solution of the

problem
min x21 + x22,

s.t. x21 + x22 ≤ 5,

x1 + 2x2 = 4,

x1, x2 ≥ 0.

Solution: Write the Lagrange function

L(x1, x2, u1, u2) = x21+x22+u1(x
2
1+x22−5)−u2x1−u3x2+v(x1+2x2−4), u1, u2, u3 ≥ 0.

Derive the KKT conditions

i) feasibility,

ii) u1(x
2
1 + x22 − 5) = 0, u1 ≥ 0,

u2x1 = 0, u2 ≥ 0,

u3x2 = 0, u3 ≥ 0,

iii)
∂L

∂x1
= 2x1 + 2u1x2 − u2 + v = 0,

∂L

∂x2
= 2x2 + 2u1x2 − u3 + 2v = 0.

(7.8)

For point (x1, x2) = (4
5
, 8
5
), we have that u1,2,3 = 0 (from complementarity conditions,

i.e. none of the inequality constraints is active) and v = −8
5

which is feasible value
for Lagrange multiplier corresponding to equality constraint. So we have obtained
KKT point (4

5
, 8
5
, 0, 0, 0,−8

5
).

Since the objective function and inequality constraints are convex, and the equal-
ity constraint is linear (affine), (x1, x2) = (4

5
, 8
5
) is a global solution.

Example 7.5. Consider the problem

min 2ex1−1 + (x2 − x1)2 + x23
s.t. x1x2x3 ≤ 1,

x1 + x3 ≥ c,

x ≥ 0.

For which values of c does x̄ = (1, 1, 1) with multipliers fulfill the KKT conditions?

Solution: Write the Lagrange function

L(x1, x2, x3, u1, u2) = 2ex1−1+(x2−x1)2+x23+u1(x1x2x3−1)+u2(−x1−x3+c), u1, u2 ≥ 0.
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Since we are given point x̄ = (1, 1, 1) > 0, we can skip corresponding multipliers
u3,4,5 and related terms, because all these multipliers must be equal to zero (from
complementarity). Derive the KKT conditions

i) feasibility,

ii) u1(x1x2x3 − 1) = 0, u1 ≥ 0,

u2(−x1 − x3 + c) = 0, u2 ≥ 0,

iii)
∂L

∂x1
= 2ex1−1 − 2(x2 − x1) + u1x2x3 − u2 = 0,

∂L

∂x2
= 2(x2 − x1) + u1x1x3 = 0,

∂L

∂x3
= 2x3 + u1x1x2 − u2 = 0.

(7.9)

So for x̄ = (1, 1, 1), we solve

2 + u1 − u2 = 0,

u1 = 0,

2 + u1 − u2 = 0,

(7.10)

and get multipliers u1 = 0, u2 = 2. We must not forget for the feasibility. Obviously
first constraint is fulfilled and for the second one it must hold c ≤ 2. However, if
c < 2, then the second complementarity condition is not fulfilled u2(−x1−x3+c) 6= 0.
Therefore we have obtained KKT point (1,1,1,0,2) only if c = 2 when the second
constraint is active.

Example 7.6. Let n ≥ 2. Consider the problem

min x1

s.t.
n∑
i=1

(
xi −

1

n

)2

≤ 1

n(n− 1)
,

n∑
i=1

xi = 1.

Show that (
0,

1

n− 1
, . . . ,

1

n− 1

)
is an optimal solution.

Solution: First, realize that the considered point is feasible. Write the Lagrange
function

L(x1, . . . , xn, u, v) = x1 + u

( n∑
i=1

(
xi −

1

n

)2

− 1

n(n− 1)

)
+ v

(
n∑
i=1

xi − 1

)
,
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where u ≥ 0 and v ∈ R. The KKT conditions (feasibility, complementarity and
optimality) are

i)
n∑
i=1

(
xi −

1

n

)2

≤ 1

n(n− 1)
,

n∑
i=1

xi = 1,

ii) u

(
n∑
i=1

(
xi −

1

n

)2

− 1

n(n− 1)

)
= 0, u ≥ 0,

iii)
∂L

∂x1
= 1 + 2u

(
x1 −

1

n

)
+ v = 0,

∂L

∂xi
= 2u

(
x1 −

1

n

)
+ v = 0, i 6= 1.

(7.11)

Realize that the inequality constraint is active at the considered point, i.e.(
0− 1

n

)2

+
n∑
i=2

(
1

n− 1
− 1

n

)2

=
1

n(n− 1)
.

To obtain the values of Lagrange multipliers, we solve the optimality conditions

1− 2u

n
+ v = 0,

2u

(
1

n− 1
− 1

n

)
+ v = 0, (∀i 6= 1).

(7.12)

By solving this linear system for u and v, we obtain the values

u =
n− 1

2
≥ 0,

v =
−1

n
∈ R.

(7.13)

Thus, we have obtained a KKT point

(x, u, v) =

(
0,

1

n− 1
, . . . ,

1

n− 1
,
n− 1

2
,
−1

n

)
,

Since the objective function is convex (linear), the inequality constraint is convex and
the equality constraint is linear, the considered point is a global solution (minimum)
of the problem.

Example 7.7. Let n ≥ 2. Consider the problem

min
n∑
j=1

cj
xj

s.t.
n∑
j=1

xj = 1,

xj ≥ ε, j = 1, . . . , n,

where cj > 0,∀j, ε > 0 are parameters. Using the KKT conditions find an optimal
solution.
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Solution: Write the Lagrange function

L(x, u, v) =
n∑
j=1

cj
xj

+
n∑
j=1

uj(ε− xj) + v

(
n∑
j=1

xj − 1

)
, uj ≥ 0, v ∈ R.

The KKT condition are then

i) feasibility,

ii) complementarity:

uj(ε− xj) = 0, uj ≥ 0 j = 1, . . . , n,

iii) optimality:
∂L(x, u, v)

∂xj
=
−cj
(xj)2

− uj + v = 0, j = 1, . . . , n.

We can split the elaboration of the KKT conditions into three cases:

1. xj = ε for all j,

2. uj = 0 for all j,

3. xj = ε for j ∈ J1 and uj = 0 for j ∈ J2, where J1 ∪ J1 = {1, . . . , n} and
J1 ∩ J2 = ∅. (This covers many cases which can be resolved at once.)

1. xj = ε for all j: the obtained point can be feasible only if ε = 1/n. Then we can
calculate the Lagrange multipliers using the optimality conditions

−cj
ε2
− uj + v = 0, j = 1, . . . , n,

i.e. we have
uj = −cj n2 + v, j = 1, . . . , n.

If all uj are nonnegative, we have a KKT point. It is enough to select

v ≥ max
j
{cj n2}.

2. uj = 0 for all j leads to

xj =

√
cj
v
, ∀j.,

which is well defined if v > 0. We can calculate v using the constraint

n∑
j=1

xj =
n∑
j=1

√
cj
v

= 1,

leading to

v =

(
n∑
i=1

√
ci

)2

> 0,
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and

xj =

√
cj∑n

i=1

√
ci
.

What is not obvious, is the feasibility, i.e. xj ≥ ε, ∀j. If it holds, then( √
c1∑n

i=1

√
ci
, . . . ,

√
cn∑n

i=1

√
ci
, 0, . . . , 0,

( n∑
i=1

√
ci

)2
)

is a KKT point.

3. uj = 0 for j ∈ J2 leads to

xj =

√
cj
v
, j ∈ J2,

which is well defined if v > 0. Together with xj = ε, j ∈ J1, using the feasibility
condition, we have

n∑
j=1

xj =
∑
j∈J1

ε+
∑
j∈J2

√
cj
v

= 1.

Let n1 = |J1| be the cardinality of set J1. Then we obtain

v =

(∑n
j∈J2
√
cj

1− n1ε

)2

,

which is well defined if n1ε < 1, and then also positive. The remaining Lagrange
multipliers are equal to

uj =
−cj
ε2

+ v, j ∈ J1.

If these multipliers are nonnegative and xj ≥ ε, ∀j ∈ J2, we have obtained a KKT
point.

We can easily realize that the problem is convex, because the objective function
is convex for xj > 0 (realize that cj > 0) and the constraints are linear. Thus, any
KKT point corresponds to a global solution.

Example 7.8. (*) Consider the problem

min
n∑
j=1

cj
xj

s.t.
n∑
j=1

ajxj = b,

xj ≥ ε,

where aj, b, cj, ε > 0 are parameters. Using the KKT conditions find an optimal
solution.

Example 7.9. (*) Write the KKT conditions for a linear programming problem.
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Example 7.10. Consider the (water-filling5) problem

min −
n∑
i=1

log(αi + xi)

s.t.
n∑
i=1

xi = 1

xi ≥ 0,

where αi > 0 are parameters. Using the KKT conditions find the solutions.

Solution: First realize that the problem is convex, i.e. the objective is convex and
the constraints are linear. Consider the Lagrange function

L(x, u, v) = −
n∑
i=1

log(αi + xi)−
n∑
i=1

uixi + v

(
n∑
i=1

xi − 1

)
, ui ≥ 0, v ∈ R.

The KKT conditions are:

i)
n∑
i=1

xi = 1, xi ≥ 0, i = 1, . . . , n

ii) uixi = 0, ui ≥ 0, i = 1, . . . , n,

iii) − 1

αi + xi
− ui + v = 0, i = 1, . . . , n.

We will proceed in several steps:

1. Since it holds

v =
1

αi + xi
+ ui, ∀i,

and αi > 0 and ui ≥ 0, multiplier v must be positive.

2. Now we can elaborate the complementarity conditions ii) for arbitrary i ∈
{1, . . . , n}, i.e. ui = 0 or xi = 0:

2.a. Let ui = 0, then using iii) and 1. we obtain

xi =
1

v
− αi,

which is nonnegative if and only if v ≤ 1/αi.

2.b. Let xi = 0, then using iii) and 1. we obtain

ui = −1/αi + v,

which is nonnegative if and only if v ≥ 1/αi. Now realize that if v ≥ 1/αi,
then corresponding xi cannot be positive because from iii) it would hold

− 1

αi + xi
+ v = ui > 0,

which violates the complementarity condition (xi and ui cannot be both
positive). In other words, xi is positive if and only if v ∈ (0, 1/αi).

5See Boyd and Vandenberghe (2004).
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We have obtained two cases which are distinguished by relation between v and
1/αi. Then we can write

xi = max

{
1

v
− αi, 0

}
.

3. It remains to determine the value of Lagrange multiplier v using the equality
constraint

n∑
i=1

max

{
1

v
− αi, 0

}
= 1,

which has a unique solution since the function of
∑n

i=1 max {· − αi, 0} is piecewise-
linear, continuous and increasing with breakpoints at points αi. Note that there
is no closed-form formula for v, we are satisfied with its existence.

Example 7.11. (*) Derive the least square estimate for coefficients in the linear re-
gression model under linear constraints, i.e. solve the problem

min
β
‖Y −Xβ‖2 ,

s.t. Aβ = b.

Example 7.12. (*) Consider the problem

min
x1 + 3x2 + 3

2x1 + x2 + 6

s.t. 2x1 + x2 ≤ 12,

− x1 + 2x2 ≤ 4,

x1, x2 ≥ 0.

Verify that the KKT conditions are fulfilled for all points on the line between (0,0)
and (6,0). Are the KKT conditions sufficient for global optimality?

7.3 Constraint qualification conditions

Example 7.13. Consider the problem

min x1

s.t. (x1 − 1)2 + (x2 − 1)2 ≤ 1

(x1 − 1)2 + (x2 + 1)2 ≤ 1.

The optimal solution is obviously the only feasible point (1, 0). Why are not the
KKT conditions fulfilled? Discuss the Constraint Qualification conditions.
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Solution: Write the Lagrange function

L(x1, x2u1, u2) = x1+u1
(
(x1−1)2+(x2−1)2−1

)
+u2

(
(x1−1)2+(x2+1)2−1

)
, u1, u2 ≥ 0.

Derive the KKT conditions

i) feasibility,

ii) u1
(
(x1 − 1)2 + (x2 − 1)2 − 1

)
= 0, u1 ≥ 0,

u2
(
(x1 − 1)2 + (x2 + 1)2 − 1

)
= 0, u2 ≥ 0,

iii)
∂L

∂x1
= 1 + 2u1(x1 − 1) + 2u2(x1 − 1) = 0,

∂L

∂x2
= 2u1(x2 − 1) + 2u2(x2 + 1) = 0.

(7.14)

Now, by substituting point (1,0) into the equation we obtain

∂L

∂x1
(1, 0) = 1 6= 0,

which is a contradiction with the optimality condition. In other words, there are no
multipliers u1,2 ≥ 0 such that (1, 0, u1, u2) is a KKT point. The explanation is easy:
No Constraint Qualification condition is fulfilled. We can quickly check the basic
(strongest) ones:
Slater CQ: There is no x such that

(x1 − 1)2 + (x2 − 1)2 < 1 & (x1 − 1)2 + (x2 + 1)2 < 1.

LI CQ: We can compute the gradients

∇g1(1, 0) =

(
2(x1 − 1)
2(x2 − 1)

)
|(1,0) =

(
0
−2

)
, ∇g2(1, 0) =

(
2(x1 − 1)
2(x2 + 1)

)
|(1,0) =

(
0
2

)
,

which are not linearly independent.
To summarize, the basic (strongest) CQ conditions are not fulfilled, but since we

were not able to find the Lagrange multipliers, even weaker CQ conditions cannot be
fulfilled.

Example 7.14. Consider the problem with real parameter a

min x1

s.t. (x1 − 1)2 + (x2 − 1)2 ≤ 1

(x1 − 1)2 + (x2 + a)2 ≤ 1.

Discuss the Slater and LI Constraint Qualification conditions.

Solution: First realize that the set of feasible solutions is nonempty only if a ∈
[−3, 1]. We can verify the CQ conditions:
Slater CQ: the functions defining the set of feasible solutions are convex and

(x1 − 1)2 + (x2 − 1)2 < 1 & (x1 − 1)2 + (x2 + a)2 < 1
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is nonempty if a ∈ (−3, 1).
LI CQ: Obviously, the optimal solution is the left intersection of the circles, which
can be expressed as

(x1, x2) =

1−

√
1−

(
1− a2

2(a+ 1)
− 1

)2

,
1− a2

2(a+ 1)

 , a ∈ [−3, 1].

We can compute the gradients in these points

∇g1(1, 0) =

(
2(x1 − 1)
2(x2 − 1)

)
, ∇g2(1, 0) =

(
2(x1 − 1)
2(x2 + a)

)
,

which are linearly independent if a ∈ (−3, 1)\{−1}. Note that a = −1 corresponds to
the case when the constraints are identical. Therefore it can be resolved by forgetting
of one of the constraints. However, for a = −3 we have (x1, x2) = (1, 2) and the
gradients are linearly dependent. Case a = 1 was discussed in the previous example.

Example 7.15. Consider the problem

min (x1 − 2)2 + x22
s.t. − (1− x1)3 + x2 ≤ 0,

x2 ≥ 0.

Use the picture to show that (1, 0) is the global optimal solution. Why are not the
KKT conditions fulfilled? Discuss the Constraint Qualification conditions.

Solution: Write the Lagrange function

L(x1, x2u1, u2) = (x1 − 2)2 + x22 + u1
(
− (1− x1)3 + x2

)
− u2

(
x2
)
, u1, u2 ≥ 0.

Derive the KKT conditions

i) feasibility,

ii) u1
(
− (1− x1)3 + x2

)
= 0, u1 ≥ 0,

u2
(
x2
)

= 0, u2 ≥ 0,

iii)
∂L

∂x1
= 2(x1 − 2) + 3u1(x1 − 1)2 = 0,

∂L

∂x2
= 2x2 + u1 − u2 = 0.

(7.15)

Now, by substituting point (1,0) into the equation we obtain

∂L

∂x1
(1, 0) = −2 6= 0,

which is a contradiction with the optimality condition. In other words, there are no
multipliers u1,2 ≥ 0 such that (1, 0, u1, u2) is a KKT point. The explanation is easy:
No Constraint Qualification condition is fulfilled. Note that the interior of the set
of feasible solution is nonempty, however the function g1 which defines the set is not
convex. Therefore the Slater CQ is not fulfilled.
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8 Appendix

8.1 Introduction to optimization

Please repeat the topics which were contained in Introduction to optimization or
similar lectures:

• Polyhedral sets

• Cones

• Extreme points and directions

• Farkas theorem

• Convexity of sets and functions

• Symmetric Local Optimality Conditions (SLPO)

Example 8.1. Consider the problem

min x1

s.t. (x1 − 1)2 + (x2 − 1)2 ≤ 1,

(x1 − 1)2 + (x2 + 1)2 ≤ 1,

x1, x2 ≥ 0.

Using the picture find an optimal solution. Formulate the symmetric local optimal-
ity conditions and verify if they are fulfilled for the optimal solution. Discuss the
constraints qualification conditions.

Solution: The optimal solution is obviously the only feasible point (1, 0). Note that
the functions (in the objective function as well as in the constraints) are convex.
Write the Lagrange function

L(x1, x2y1, y2) = x1+y1
(
(x1−1)2+(x2−1)2−1

)
+y2

(
(x1−1)2+(x2+1)2−1

)
, y1, y2 ≥ 0.

Derive the SLPO optimality conditions

i)
∂L

∂x1
= 1 + 2y1(x1 − 1) + 2y2(x1 − 1) ≥ 0, x1

∂L

∂x1
= 0, x1 ≥ 0,

∂L

∂x2
= 2y1(x2 − 1) + 2y2(x2 + 1) ≥ 0, x2

∂L

∂x2
= 0, x2 ≥ 0,

ii)
∂L

∂y1
= (x1 − 1)2 + (x2 − 1)2 − 1 ≤ 0, y1

(
(x1 − 1)2 + (x2 − 1)2 − 1

)
= 0, y1 ≥ 0,

∂L

∂y2
= (x1 − 1)2 + (x2 + 1)2 − 1 ≤ 0, y2

(
(x1 − 1)2 + (x2 + 1)2 − 1

)
= 0, y2 ≥ 0.

(8.1)

Now, by substituting point (1,0) into the conditions, since x1 = 1 6= 0 we obtain

∂L

∂x1
(1, 0) = 1 6= 0,

i.e. there are no Lagrange multipliers y1,2 ≥ 0 such that (1, 0, y1, y2) fulfills the SLPO
conditions. The explanation is easy: No Constraint Qualification condition is fulfilled.
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We can quickly check the basic (strongest) ones:
Slater CQ: There is no x ≥ 0 such that

(x1 − 1)2 + (x2 − 1)2 < 1 & (x1 − 1)2 + (x2 + 1)2 < 1.

LI CQ: We can compute the gradients

∇g1(1, 0) =

(
2(x1 − 1)
2(x2 − 1)

)
|(1,0) =

(
0
−2

)
, ∇g2(1, 0) =

(
2(x1 − 1)
2(x2 + 1)

)
|(1,0) =

(
0
2

)
,

which are obviously not linearly independent.
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8.2 Generalizations of convex functions

We can be faced some optimization problems when the functions in the objective
and constraints are not convex, but the problem still posses some global optimality
properties. For example, the set of the feasible solutions can still be convex in the case
of quasiconvex constraints or the objective may be pseudoconvex. Many optimality
conditions, which are sufficient to prove optimality under convexity assumptions, can
be valid under some of the generalizations, see Bazaraa et al. (2006).

8.2.1 Quasiconvex functions

Definition 8.2. We say that a function f : Rn → R is quasiconvex, if all its level sets
are convex, i.e. {x ∈ dom(f) : f(x) ≤ α} is convex for all α ∈ R.

Obviously all convex functions are quasiconvex.

Example 8.3. Find several examples of functions which are quasiconvex, but they
are not convex. Try to find an example of function which is not continuous on the
interior of its domain (thus it cannot be convex).

Solution: Consider logarithm, which is not convex (it is even concave), but it is
quasiconvex, because the level sets {x ∈ (0,∞) : ln(x) ≤ α} = (0, eα] are intervals,
thus convex sets.

Consider the cumulative distribution function of a discrete random variable with
equiprobable realizations ξ1, ξ2, ξ3:

F (x) =
1

3

3∑
i=1

I(ξi ≤ x).

CDF is not convex, but it is quasiconvex because the α-level sets are intervals

{x ∈ R : F (x) ≤ α} = (−∞, F−1(α)], α ∈ [0, 1],

where the generalized quantile (inverse of cdf) is defined as

F−1(α) = min x : F (x) ≥ α.

Example 8.4. Show that the following property is equivalent to the definition of
quasiconvexity:

f(λx+ (1− λ)y) ≤ max{f(x), f(y)}
for all x, y ∈ dom(f) and λ ∈ [0, 1].

Solution: Let all level sets of the function be convex. Consider arbitrary x, y ∈
dom(f), λ ∈ (0, 1) and set α := max{f(x), f(y)}. This means that points x, y belong
to the α-level set. Since the α-level set is convex, we have also that the convex
combination λx+ (1− λ)y belongs to it too. This means that

f(λx+ (1− λ)y) ≤ α = max{f(x), f(y)}, (8.2)

which we wanted to show.
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Now let the property (8.2) be fulfilled. Choose α such that the corresponding
level set is nonempty. Take two arbitrary x, y from the α-level set and λ ∈ (0, 1).
Since the property (8.2) is fulfilled, we have that

f(λx+ (1− λ)y) ≤ max{f(x), f(y)} ≤ α,

i.e. the convex combination λx + (1 − λ)y belongs to the α-level set and the set is
convex.

Example 8.5. Verify that the following functions are quasiconvex on given sets:

f1(x, y) = xy for (x, y) ∈ R+ × R−,

f2(x) =
aTx+ b

cTx+ d
for cTx+ d > 0.

Solution:
1. We use the original definition and investigate the convexity of the level sets:

{(x, y) ∈ R+ × R− : xy ≤ α} .

For α ≥ 0 the level set equals to the whole quadrant R+×R−, i.e. it is convex. When
α < 0, we have {

(x, y) ∈ (0,∞)× (−∞, 0) : y ≤ α

x

}
,

which is also a convex set (use a plot, if necessary). Thus the function is quasiconvex.
2. It is easier to use the first definition and consider a nonempty α-level set{

x ∈ Rn : cTx+ d > 0,
aTx+ b

cTx+ d
≤ α

}
.

The constraint can be rewritten as

aTx+ b ≤ α(cTx+ d),

or
(a− αc)Tx+ b− αd ≤ 0,

which is a halfspace, same as cTx+ d > 0, thus a convex set.

Example 8.6. Continuous function f : R→ R is quasiconvex if and only if one of the
following conditions holds

• f is nondecreasing,

• f is nonincreasing,

• there is a c ∈ R such that f is nonincreasing on (−∞, c] and nondecreasing on
[c,∞).

Solution: Realize that the level sets of the above described cases are intervals which
are the only convex subsets of R. In any other case you arrive for some α to a union
of disjoint intervals which is not a convex set.
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Example 8.7. (*) Let f be differentiable. Show that f is quasiconvex if and only if it
holds

f(y) ≤ f(x) =⇒ ∇f(x)T (y − x) ≤ 0.

Example 8.8. (*) Let f be a differentiable quasiconvex function. Show that the
condition

∇f(x) = 0

does not imply that x is a local minimum of f . Find a counterexample.

Example 8.9. Let f1, f2 : Rn → R be quasiconvex functions, g : R → R be a nonde-
creasing function and t ≥ 0 be a scalar. Prove that the following operations preserve
quasiconvexity:

1. t f1,

2. max{f1, f2},
3. g ◦ f1.

Solution:
1. Consider the alternative definition (8.2), i.e. it holds

f1(λx+ (1− λ)y) ≤ max{f1(x), f1(y)}

for all x, y ∈ dom(f1) and λ ∈ [0, 1]. If we multiply the inequality by nonnegative
scalar t, we obtain

t f1(λx+ (1− λ)y) ≤ t max{f1(x), f1(y)} = max{t f1(x), t f1(y)},

i.e. the function t f1 is also quasiconvex.
2. Left to the readers.
3. We can again use that

f1(λx+ (1− λ)y) ≤ max{f1(x), f1(y)}

for all x, y ∈ dom(f1) and λ ∈ [0, 1] and apply nondecreasing function g

g
(
f1(λx+ (1− λ)y)

)
≤ g
(

max{f1(x), f1(y)}
)

= max
{
g
(
f1(x)

)
, g
(
f1(y)

)}
,

which confirms the quasiconvexity of the composition.

Example 8.10. Let f1, f2 be quasiconvex functions. Find counterexamples that the
following operations DO NOT preserve quasiconvexity:

1. f1 + f2,

2. f1f2.
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Solution:
1. Consider f1(x) = x3 and f2(x) = −x, which are obviously both quasiconvex.
However, if we plot their sum, we obtain

x

y

−1 1

which is not a quasiconvex function, because it does not fulfill Lemma 8.6.
2. Left to the readers.

Example 8.11. Verify that the following functions are quasiconvex on given sets:

f1(x, y) =
1

xy
on R2

++,

f2(x, y) =
x

y
on R2

++,

f3(x, y) =
x2

y
on R× R++,

f4(x, y) =
√
|x+ y| on R2.

Solution:
1. Use one of the definitions.
2. Use one of the definitions.
3. Use one of the definitions.
4. Since |x + y| is convex, therefore quasiconvex, and

√
· is nondecreasing, we can

use the rule and conclude that f4 is quasiconvex.

Example 8.12. Let S be a nonempty convex subset of Rn, g : S → R+ be convex and
h : S → (0,∞) be concave. Show that the function defined by

f(x) =
g(x)

h(x)

is quasiconvex on S.

Solution: We can show that the α-level sets are convex: for α ≥ 0 the constraint
can be rewritten as{

x ∈ S :
g(x)

h(x)
≤ α

}
=

{
x ∈ S : g(x)− αh(x) ≤ 0

}
,

where g(x) is assumed to be convex and −αh(x) is also convex. Therefore their sum
is a convex function and we have its 0-level set. Note that the attempt to verify the
alternative definition was usually not successful.
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8.2.2 Additional examples: strictly quasiconvex functions

Definition 8.13. We say that a function f : Rn → R is strictly quasiconvex if

f(λx+ (1− λ)y) < max{f(x), f(y)}

for all x, y with f(x) 6= f(y) and λ ∈ (0, 1).

Lemma 8.14. (*) Let f be strictly quasiconvex and S be a convex set. Then any local
minimum x of minx∈S f(x) is also a global minimum.

8.2.3 Pseudoconvex functions

Definition 8.15. Consider S ⊂ Rn a nonempty open set. We say that differentiable
function f : S → R is pseudoconvex with respect to S if it holds

∇f(x)T (y − x) ≥ 0 =⇒ f(y) ≥ f(x)

for all x, y ∈ S.

Remark 8.16. Sometimes it is useful to employ an alternative expression of the defi-
nition

f(y) < f(x) =⇒ ∇f(x)T (y − x) < 0

for all x, y ∈ S.

Example 8.17. Let f : Rn → R be a differentiable function. Show that if f is convex,
then it is also pseudoconvex on its domain.

Solution: We know that for every differentiable convex function it holds

f(y) ≥ f(x) +∇f(x)T (y − x), x, y ∈ dom(f).

Then obviously ∇f(x)T (y − x) ≥ 0 implies that f(y) ≥ f(x).

Example 8.18. (*) Find a pseudoconvex function which is not convex.

Hint: Consider increasing functions.

Example 8.19. Use the definition to show that the following fractional linear function
is pseudoconvex:

f(x) =
aTx+ b

cTx+ d
for cTx+ d > 0.

Solution: We focus on the univariate case, i.e. x ∈ R and

f(x) =
ax+ b

cx+ d
for cx+ d > 0.
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We compute the derivative

f ′(x) =
a(cx+ d)− (ax+ b)c

(cx+ d)2
.

We would like to show that f ′(x)(y − x) ≥ 0 implies f(y) ≥ f(x), i.e.(
a(cx+ d)− (ax+ b)c

)
(y − x) = ady + bcx− adx− bcy ≥ 0

implies
ay + b

cy + d
≥ ax+ b

cx+ d
,

which is on the domain equivalent to

(ay + b)(cx+ d)− (ax+ b)(cy + d) = ady + bcx− adx− bcy ≥ 0.

The conditions are obviously the same.

Example 8.20. (*) Consider fractional function f as defined in Example 8.12. More-
over, let S be open and g, h be differentiable on S. Show that f is pseudoconvex.

Example 8.21. Let f : S → R be a differentiable function. Show that if f is pseudo-
convex, than it is also quasiconvex.

Solution: We will verify the alternative definition from Example 8.4. Take x, y ∈ S
and λ ∈ (0, 1). Set z = λx + (1 − λ)y. If f(z) ≤ f(x), we are finished. So assume
that f(z) > f(x). Since the function is quasiconvex, we have

∇f(z)T (x− z) < 0.

Consider
x− z = x− λx− (1− λ)y = (1− λ)(x− y),

y − z = y − λx− (1− λ)y = −λ(x− y),

hence

y − z =
−λ

1− λ
(x− z),

and using the properties of the scalar product we obtain

∇f(z)T (y − z) =
−λ

1− λ
∇f(z)T (x− z) > 0.

Function f is pseudoconvex, therefore f(z) ≤ f(y). Hence we have

f(z) ≤ max{f(x), f(y)}.

Example 8.22. Show that if ∇f(x) = 0 for a pseudoconvex f , then x is a global
minimum of f .
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Solution: The condition ∇f(x)T (y − x) = 0 ≥ 0 is fulfilled which implies that
f(y) ≥ f(x) for all y from the domain.

Example 8.23. (*) The following table summarizes relations between the stationary
points and minima of a differentiable function f :

f general: x global min. =⇒ x local min. =⇒ ∇f(x) = 0
f quasiconvex: x global min. =⇒ x local min. =⇒ ∇f(x) = 0
f strictly quasiconvex: x global min. ⇐⇒ x local min. =⇒ ∇f(x) = 0
f pseudoconvex: x global min. ⇐⇒ x local min. ⇐⇒ ∇f(x) = 0
f convex: x global min. ⇐⇒ x local min. ⇐⇒ ∇f(x) = 0.

For details see Bazaraa et al. (2006).

8.3 Optimality conditions based on directions

Example 8.24. Consider the global optimization problem

min 2x21 − x1x2 + x22 − 3x1 + e2x1+x2 .

Find a descent direction at point (0,0) and formulate a minimization problem in that
direction.

Solution: Compute the gradient, i.e. denote the objective function by f and

∂f

∂x1
= 4x1 − x2 − 3 + 2e2x1+x2 ,

∂f

∂x2
= −x1 + 2x2 + e2x1+x2 .

We have that

∇f(0, 0) =

(
−1

1

)
,

which is not zero vector, i.e. −∇f(0, 0) is a (local) descent direction. Below we will
describe the whole set of descent directions. Using step length t ≥ 0 we move to a
new point in the descent direction as(

xt1
xt2

)
=

(
0
0

)
+ t

(
1
−1

)
.

Then we can solve the following one dimensional problem with decision variable t

min
t≥0

f(xt1, x
t
2).

Note that many algorithms for solving nonlinear programming problems work in this
way and they differ by the choices of the descent direction. In our case, it corresponds
to the gradient (first order) algorithm.
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Example 8.25. Verify the optimality conditions at point (2, 4) for problem

min (x1 − 4)2 + (x2 − 6)2

s.t. x21 ≤ x2,

x2 ≤ 4.

Consider the same point for the problem with the second inequality constraint in the
form

x2 ≤ 5.

Solution: Use the basic optimality conditions derived for a convex objective function
and a convex set of feasible solutions, see Theorem 3.3 in Lecture notes. Denote the
objective function by f and compute its gradient

∂f

∂x1
= 2(x1 − 4),

∂f

∂x2
= 2(x2 − 6),

hence ∇f(2, 4) = (−4,−4)T . The optimality condition stands

∇f(2, 4)T
(
x1 − 2
x2 − 4

)
= −4(x1 − 2)− 4(x2 − 4) ≥ 0,

for all feasible solutions, which is fulfilled because |x1| ≤ 2 and x2 ≤ 4, i.e. (2, 4) is a
point of global minima.

If we change the last constraint, the optimality condition remains valid, however
the set of feasible solutions is |x1| ≤

√
5 and x2 ≤ 5, i.e. by choosing x1 = 2 and

x2 = 5, we obtain
−4(2− 2)− 4(5− 4) < 0,

i.e. the condition is not fulfilled.

Example 8.26. Consider open ∅ 6= S ⊆ Rn, f : S → R, and define set of improving
directions of f at x ∈ S

Ff (x) = {s ∈ Rn : s 6= 0, ∃δ > 0 ∀0 < λ < δ : f(x+ λs) < f(x)}.

1. For a differentiable f , define the inner approximation

Ff,0(x) = {s ∈ Rn : 〈∇f(x), s〉 < 0}.

Show that it holds
Ff,0(x) ⊆ Ff (x).

2. Moreover, if f is pseudoconvex at x with respect to a neighborhood of x, then

Ff,0(x) = Ff (x).

3. If f is convex, then

Ff (x) = {α(y − x) : α > 0, f(y) < f(x), y ∈ S}.
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4. For a differentiable f , define the outer approximation

F ′f,0(x) = {s ∈ Rn : s 6= 0, 〈∇f(x), s〉 ≤ 0}.

Show that it holds
Ff (x) ⊆ F ′f,0(x).

Solution: We will use the scalarization function:

ϕx,s(λ) = f(x+ λs),

which is defined on Dx,s = {λ ∈ R : x + λs ∈ S}. If f is differentiable at x, then
ϕx,s is differentiable at 0 and it holds

ϕ′x,s(0) = ∇f(x)T s.

1. Take s ∈ Ff,0(x), hence

ϕ′x,s(0) = ∇f(x)T s < 0,

i.e. ϕx,s(λ) is decreasing on some δ-neighborhood of 0 for some δ > 0, which means
that

f(x+ λs) < f(x), 0 < λ < δ.

This means that s ∈ Ff (x).
2. Let f be pseudoconvex with respect to δ′-neighborhood of x for some δ′ > 0.
Consider s ∈ Ff (x), which means that

f(x+ λs) < f(x), 0 < λ < δ, for some δ > 0.

Together with psedoconvexity this implies that

∇f(x)T (x+ λs− x) = λ∇f(x)T s < 0, for λ ∈ (0, δ′′),

where δ′′ = min{δ/ ‖s‖ , δ′}. This means that ∇f(x)T s < 0 and s ∈ F ′f,0(x).
3. Left to the readers.
4. The proof is in the reverse order of 1. when

f(x+ λs) < f(x), 0 < λ < δ

implies that
ϕ′x,s(0) = ∇f(x)T s ≤ 0.

Example 8.27. Consider the global optimization problem from Example 8.24

min 2x21 − x1x2 + x22 − 3x1 + e2x1+x2 .

Derive the set of improving directions at (0,0).
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Solution: We know that
∂f

∂x1
(0, 0) = −1,

∂f

∂x2
(0, 0) = 1,

i.e. we get
Ff,0(0, 0) = {s ∈ R2 : s1 > s2},
F ′f,0(0, 0) = {s ∈ R2 : s 6= 0, s1 ≥ s2}.

Since f is convex, thus pseudoconvex, we have that

Ff (x) = Ff,0(x).

Example 8.28. Consider the global optimization problem

min 2x21 − 3x1x
2
2 + x42.

Derive the set of improving directions at (0,0).

Solution: Compute the gradient of the objective function

∂f

∂x1
= 4x1 − 3x22|(0,0) = 0,

∂f

∂x2
= −6x1x2 + 4x32|(0,0) = 0.

Since we obtained zero gradient, realize that the approximating sets are trivial

Ff,0(0, 0) = ∅,
F ′f,0(0, 0) = R2 \ {(0, 0)}.

We should verify whether (0, 0) is a point of local minima. However, the Hessian
matrix does not answer the question and higher order derivatives are necessary.

We focus on local approximation of the set of feasible solutions.

Example 8.29. Consider open ∅ 6= S ⊆ Rn, functions gi : S → R, and the set of
feasible solutions

M = {x ∈ S : gi(x) ≤ 0, i = 1, . . . ,m}.

Define the set of feasible directions of M at x ∈M

DM(x) = {s ∈ Rn : s 6= 0, ∃δ > 0 ∀0 < λ < δ : x+ λs ∈M}.

1. If M is a convex set, then

DM(x) = {α(y − x) : α > 0, y ∈M, y 6= x}.
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2. For differentiable gi and x ∈M define6

Gg,0(x) = {s ∈ Rn : 〈∇gi(x), s〉 < 0, i ∈ Ig(x)},
G′g,0(x) = {s ∈ Rn : s 6= 0, 〈∇gi(x), s〉 ≤ 0, i ∈ Ig(x)}.

In general, it holds7

Gg,0(x) ⊆ DM(x) ⊆ G′g,0(x).

Solution:
1. Left to the readers.
2. We will use the scalarization functions: for i ∈ Ig(x) define

ϕi,x,s(λ) = gi(x+ λs),

which is defined on Dx,s = {λ ∈ R : x + λs ∈ S}. If gi is differentiable at x, then
ϕi,x,s is differentiable at 0 and it holds

ϕ′i,x,s(0) = ∇gi(x)T s.

Let x ∈M and s ∈ Gg,0(x). This means that for i ∈ Ig(x) with gi(x) = 0 we have

ϕ′i,x,s(0) = ∇gi(x)T s < 0,

i.e. there is δi > 0 such that gi is decreasing in direction s from x using step lengths
λ ∈ (0, δi), thus gi(x + λs) ≤ 0 for λ ∈ (0, δi). For i /∈ Ig(x) with gi(x) < 0,
differentiability (hence continuity) implies that there is δi > 0 such that gi(x+λs) ≤ 0
for λ ∈ (0, δi). It is enough to consider δ = mini δi to show that s ∈ DM(x).
Proof of DM(x) ⊆ G′g,0(x) is left to the readers.

Example 8.30. Derive the above defined sets of directions for the sets

M1 = {(x, y) : −(x− 2)2 ≥ y − 2, −(y − 2)2 ≥ x− 2},
M2 = {(x, y) : (x− 2)2 ≥ y − 2, (y − 2)2 ≥ x− 2},

at point (2,2). Use the pictures to decide which of the approximations are tight.

Solution: Consider M1 and compute

∇g1(2, 2) =

(
2(x− 2)

1

)
|(2,2) =

(
0
1

)
, ∇g2(2, 2) =

(
1

2(y − 2)

)
|(2,2) =

(
1
0

)
So we have

Gg,0(2, 2) = {s ∈ R2 : s1 < 0, s2 < 0},
G′g,0(2, 2) = {s ∈ R2 : s 6= 0, s1 ≤ 0, s2 ≤ 0}.

Using the picture, we can conclude that the tangent directions do not belong to the
set of feasible directions, i.e.

DM1(2, 2) = Gg,0(2, 2).

6Set of indices of active constraints: Ig(x) = {i : gi(x) = 0}
7Note that there are sufficient conditions stating which approximation is tight, see Bazaraa et

al. (2006) for details.
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M1

x

y

Consider M2 and compute

∇g1(2, 2) =

(
−2(x− 2)

1

)
|(2,2) =

(
0
1

)
, ∇g2(2, 2) =

(
1

−2(y − 2)

)
|(2,2) =

(
1
0

)
So we have

Gg,0(x) = {s ∈ R2 : s1 < 0, s2 < 0},
G′g,0(x) = {s ∈ R2 : s 6= 0, s1 ≤ 0, s2 ≤ 0}.

Using the picture, we can conclude that the tangent directions belong to the set of
feasible directions, i.e.

DM2(2, 2) = G′g,0(2, 2).

M2

x

y

Example 8.31. (*) Derive the above defined sets of directions for a polyhedral set

M = {x ∈ Rn : Ax ≤ b}.

Example 8.32. Derive the above defined sets of directions for the problem

min (x1 − 3)2 + (x2 − 2)2

s.t. x21 + x22 ≤ 5,

x1 + x2 ≤ 3,

x1 ≥ 0, x2 ≥ 0,

at point (2,1). Discuss the intersection of the sets of directions which is an optimality
condition. Apply the Farkas theorem to the conditions on directions.
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Solution: Denote
g1(x) = x21 + x22 − 5,

g2(x) = x1 + x2 − 3,

g3(x) = − x1,
g4(x) = − x2,

and realize that Ig(2, 1) = {1, 2}. Now compute

∇g1(2, 1) =

(
2x1
2x2

)
|(2,1) =

(
4
2

)
, ∇g2(2, 1) =

(
1
1

)
.

So we have

Gg,0(x) = {s ∈ R2 : 2s1 + s2 < 0, s1 + s2 < 0},
G′g,0(x) = {s ∈ R2 : s 6= 0, 2s1 + s2 ≤ 0, s1 + s2 ≤ 0}.

Using the picture, we can conclude that

DM(2, 1) = {s ∈ R2 : s 6= 0, 2s1 + s2 < 0, s1 + s2 ≤ 0}.

Note that this means that

Gg,0(x) ( DM(x) ( G′g,0(x).

Denote f(x) = (x1 − 3)2 + (x2 − 2)2 and

∇f(2, 1) =

(
2(x1 − 3)
2(x2 − 2)

)
|(2,1) =

(
−2
−2

)
.

So we have
Ff,0(2, 1) = {s ∈ R2 : s1 + s2 > 0},
F ′f,0(2, 1) = {s ∈ R2 : s 6= 0, s1 + s2 ≥ 0}.

Since the objective function is convex, thus pseudoconvex, we know that

Ff (2, 1) = Ff,0(2, 1).

We can see that it holds
Ff (2, 1) ∩DM(2, 1) = ∅,

which is necessary and under convexity also sufficient optimality condition based on
the sets of directions, i.e. there is no feasible direction from (2, 1) to the set in which
the objective function decreases.

Now we can apply the Farkas theorem to

∀s ∈ R2

(
−∇g1(2, 1)T

−∇g2(2, 1)T

)
s ≥ 0 ⇒ ∇f(2, 1)T s ≥ 0,

i.e. any feasible direction (with respect to the outer approximation) is not an im-
proving direction. The implication is fulfilled if and only if system

−∇g1(2, 1)u1 −∇g2(2, 1)u2 = ∇f(2, 1)
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has a nonnegative solution. After reorganizing the terms, we obtain Karush-Kuhn-
Tucker (KKT) conditions:

∇f(2, 1) +∇g1(2, 1)u1 +∇g2(2, 1)u2 = 0, u1,2 ≥ 0.

We emphasize that this is just an outline and we refer the readers to the lecture notes
for a precise derivation. We can compute the Lagrange multipliers u1, u2 by solving

− 2 + 4u1 + u2 = 0,

− 2 + 2u1 + u2 = 0.

We obtain u1 = 0, u2 = 2 which are both nonnegative.

Example 8.33. Derive the sets of directions for the problem

min (x1 − 3)2 + (x2 − 3)2

s.t. x21 + x22 = 4,

at point (
√

2,
√

2). Consider the set of feasible directions for equality constraints
hj(x) = 0, j = 1, . . . , l, where hj : S → R are differentiable:

Hh,0(x) = {s ∈ Rn : s 6= 0, 〈∇hj(x), s〉 = 0, j = 1, . . . , l}.

Solution: We have

∇f(
√

2,
√

2) =

(
2(x1 − 3)
2(x2 − 3)

)
|(√2,√2) =

(
2(
√

2− 3)

2(
√

2− 3)

)
,

∇h(
√

2,
√

2) =

(
2x1
2x2

)
|(√2,√2) =

(
2
√

2

2
√

2

)
Then obviously

Ff (
√

2,
√

2) = {s ∈ R2 : s1 + s2 > 0},
Hh,0(

√
2,
√

2) = {s ∈ R2 : s 6= 0, s1 + s2 = 0},

and
Ff (
√

2,
√

2) ∩Hh,0(
√

2,
√

2) = ∅,
i.e. the optimality condition is fulfilled.

8.4 Second Order Sufficient Condition (SOSC)

When the problem is not convex, then the solutions of the KKT conditions need not
to correspond to global optima. The Second Order Sufficient Condition (SOSC) can
be used to verify if the KKT point (its x part) is at least a local minimum.

Consider the set of active (inequality) constraints and its partitioning

Ig(x) = {i : gi(x) = 0},
I0g (x) = {i : gi(x) = 0, ui = 0},
I+g (x) = {i : gi(x) = 0, ui > 0},

(8.3)
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i.e.
Ig(x) = I0g (x) ∪ I+g (x).

Let all functions be twice differentiable. We say that the second-order sufficient
condition (SOSC) is fulfilled at a KKT point (x, u, v) if for all 0 6= z ∈ Rn such that

zT∇xgi(x) = 0, i ∈ I+g (x),

zT∇xgi(x) ≤ 0, i ∈ I0g (x),

zT∇xhj(x) = 0, j = 1, . . . , l,

(8.4)

it holds

zT ∇2
xxL(x, u, v) z > 0. (8.5)

Then x is a strict local minimum of the nonlinear programming problem (7.1).

Example 8.34. Consider the problem

min − x
s.t. x2 + y2 ≤ 1

(x− 1)3 − y ≤ 0.

Using the KKT optimality conditions find all stationary points. Using the SOSC
verify if some of the points corresponds to a (strict) local minimum.

Solution: Write the Lagrange function

L(x, y, u1, u2) = −x+ u1
(
x2 + y2 − 1

)
+ u2

(
(x− 1)3 − y

)
, u1, u2 ≥ 0.

Derive the KKT conditions

i) feasibility,

ii) u1
(
x2 + y2 − 1

)
= 0, u1 ≥ 0,

u2
(
(x− 1)3 − y

)
, u2 ≥ 0,

iii)
∂L

∂x
= −1 + 2u1x+ 3u2(x− 1)2 = 0,

∂L

∂y
= 2u1y − u2 = 0.

(8.6)

Now, we will try to find the KKT point by analyzing the optimality conditions,
where we proceed according to the complementarity conditions:
1. Set u1 = 0, u2 = 0: We have from iii) that −1 = 0 which is a contradiction.

2. Set u1 = 0, (x − 1)3 − y = 0: We have from second equality of iii), that u2 = 0
which is again a contradiction with first equality of iii) −1 6= 0.

3. Set x2 + y2 = 1, u2 = 0: Second equality of iii) reduces to

2u1y = 0.
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Case u1 = 0 leads again to a contradiction, so the only possibility is y = 0. Using
x2 + y2 = 1 we get x ∈ {−1, 1}. Using first equality of iii) we obtain the Lagrange
multipliers, for x = 1 we get u1 = 1

2
. However, for x = −1 we obtain u1 = −1

2
< 0,

which is not feasible Lagrange multiplier. We have found one KKT point

(x, y, u1, u2) =

(
1, 0,

1

2
, 0

)
.

4. Set x2 + y2 = 1, (x− 1)3 − y = 0: Using a picture, we can find two intersections
of the curves: (1, 0) and (0,−1). The first point has been resolved by the previous
point 3. Using iii) for (0,−1) we can get u1 = −1

6
< 0 and u2 = 1

3
, which are not

feasible values of Lagrange multipliers.
Since the problem is non-convex, we can apply SOSC (8.4), (8.5). We have

Ig(1, 0) = {1, 2}, I+g (1, 0) = {1} and I0g (1, 0) = {2}. We can cumpute the gradi-
ents

∇g1(1, 0) =

(
2x
2y

)
|(1,0) =

(
2
0

)
, ∇g2(1, 0) =

(
3(x− 1)2

−1

)
|(1,0) =

(
0
−1

)
.

so the conditions on 0 6= z ∈ R2 are:

2z1 = 0,

−z2 ≤ 0.

So we have
Z(1, 0) =

{
z ∈ R2 : z1 = 0, z2 > 0

}
6= ∅.

We must compute the Heassian matrix of the Lagrange function with respect to the
decision variables

∇2
xxL

(
1, 0,

1

2
, 0

)
=

(
2u1 + 6u2(x− 1) 0

0 2u1

)
|(1,0, 1

2
,0) =

(
1 0
0 1

)
.

Thus we have that zT ∇2
xxL(1, 0, 1

2
, 0) z > 0 for any z ∈ Z(1, 0), which implies that

(1, 0) is a strict local minimum of the problem.

Example 8.35. Consider the problem

min x2 − y2

s.t. x− y = 1

x, y ≥ 0.

Using the KKT optimality conditions find all stationary points. Using the SOSC
verify if some of the points corresponds to a (strict) local minimum.

Solution: Write the Lagrange function

L(x, y, u1, u2, v) = x2 − y2 − u1x− u2y + v(x− y − 1), u1, u2 ≥ 0.
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Derive the KKT conditions

i) feasibility,

ii) − u1x = 0, u1 ≥ 0,

− u2y = 0, u2 ≥ 0,

iii)
∂L

∂x
= 2x− u1 + v = 0,

∂L

∂y
= −2y − u2 − v = 0.

(8.7)

Solving this conditions together with feasibility leads to one feasible KKT point

(x, y, u1, u2, v) = (1, 0, 0, 2,−2).

Since the problem is non-convex, we can apply SOSC (8.4), (8.5). We have Ig(1, 0) =
I+g (1, 0) = {2} and I0g (1, 0) = ∅, so the conditions on 0 6= z ∈ R2 are:

z1 − z2 = 0,

−z2 = 0.

Since no z 6= 0 exists, the SOSC is fulfilled. (It is not necessary to compute ∇2
xxL.)

Example 8.36. Consider the problem

min − x2 − 4xy − y2

s.t. x2 + y2 = 1.

Using the SOSC verify that point (
√

2/2,
√

2/2) corresponds to a (strict) local mini-
mum.

Solution: Write the Lagrange function

L(x, y, v) = −x2 − 4xy − y2 + v
(
x2 + y2 − 1

)
.

Derive the KKT conditions

i) feasibility,

ii) −

iii)
∂L

∂x
= −2x− 4y + 2vx = 0,

∂L

∂y
= −2y − 4x+ 2vy = 0.

(8.8)

We can compute the Lagrange multiplier and obtain the KKT point

(x, y, v) =

(√
2

2
,

√
2

2
, 3

)
.

Since the problem is non-convex, we can apply SOSC (8.4), (8.5). We have

∇h(
√

2/2,
√

2/2) =

(
2x
2y

)
|(√2/2,√2/2) =

( √
2√
2

)
,
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so we have

Z(
√

2/2,
√

2/2) =
{
z ∈ R2 : z1 + z2 = 0, z 6= 0

}
= {(z1,−z1) : z1 ∈ R \ {0}} .

We must compute the Hessian matrix

∇2
xxL

(√
2/2,
√

2/2, 3
)

=

(
−2 + 2v −4
−4 −2 + 2v

)
|(√2/2,√2/2,3) =

(
4 −4
−4 4

)
.

Thus we have that zT ∇2
xxL(
√

2/2,
√

2/2, 3) z = 16z21 > 0 for any z1 ∈ R \ {0}, which
implies that (

√
2/2,
√

2/2) is a strict local minimum of the problem.

Example 8.37. (*) Consider the problem

min − (x− 2)2 − (y − 3)2

s.t. 3x+ 2y ≥ 6,

− x+ y ≤ 3,

x ≤ 2.

Using the KKT optimality conditions find all stationary points. Using the SOSC
verify if some of the points corresponds to a (strict) local minimum.
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