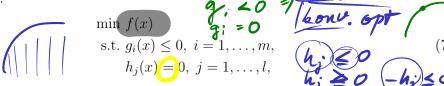
7 Nonlinear programming problems: Karush–Kuhn–Tucker Optimality conditions

7.1 A few pieces of the theory

We emphasize that this section contains just a basic summary and we refer the readers to the lecture notes for formal definitions and propositions.

Consider a **nonlinear programming problem** with inequality and equality constraints:



where $f, g_i, h_j : \mathbb{R}^n \to \mathbb{R}$ are differentiable functions. We denote by M the set of feasible solutions.

We say that the **problem is convex** if functions f, g_i, \forall_i are convex and h_j, \forall_j are affine.

Define the **Lagrange function** by

$$\underbrace{L(x, u, v)}_{Pe} = \underbrace{f(x)}_{i=1} + \sum_{i=1}^{m} \underbrace{u_{i}g_{i}(x)}_{i} + \sum_{j=1}^{l} v_{j}h_{j}(x), \underbrace{u_{i} \ge 0.}_{i}$$
(7.2)

$$L(x,u,v)=f(x) \qquad \qquad \underbrace{\sum_{i=1}^{m}u_{g_{i}(x)}^{2}}_{\text{$\bf u$; $\bf v$}} + \sum_{j=1}^{l}v_{j}h_{j}(x)$$

max min f(x) +

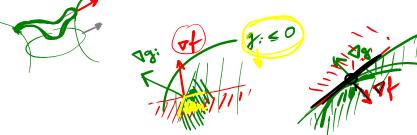
u; g; (x)

The Karush–Kuhn–Tucker optimality conditions are then (feasibility, complementarity and optimality):

pri pusth ost i)
$$g_{i}(\mathbf{x}) \leq 0, \ i = 1, \dots, m, \ h_{j}(x) = 0, \ j = 1, \dots, l,$$

$$\underset{\text{iii)}}{\text{totality}} \underbrace{v_{i}g_{i}(x) = 0, \ u_{i} \geq 0, \ i = 1, \dots, m,}_{(7.3)}$$

Any point (x, u, v) which fulfills the above conditions is called a KKT point.



PODMINKY REGULARITY

If a Constraint Qualification (CQ) condition is fulfilled, then the KKT <u>conditions</u> are necessary for local optimality of a point. Basic CQ conditions are:

- Slater CQ: $\exists \tilde{x} \in M$ such that $g_i(\tilde{x}) \leq 0$ for all i and the gradients $\nabla_x h_j(\tilde{x})$, j = 1, ..., l are linearly independent.
- Linear independence CQ at $\hat{x} \in M$: all gradients

$$\nabla_x g_i(\hat{x}), i \in I_g(\hat{x}), \nabla_x h_j(\hat{x}), j = 1, \dots, l$$

are linearly independent.

These conditions are quite strong and are sufficient for weaker <u>CQ conditions</u>, <u>e.g.</u> the Kuhn–Tucker condition (Mangasarian–Fromovitz CQ, Abadie CQ, ...).

To summarize, we are going to practice the following relations:

- 1. (KKT point and convex problem \rightarrow global optimality at x.
- 2. Local optimality at x and a constraint qualification (CQ) condition $\to \exists (u, v)$ such that (x, u, v) is a KKT point.

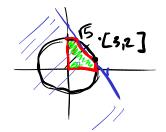
Example 7.1. Consider the nonlinear programming problem

$$\min_{x_{1}-4}(x_{1}-4)^{2} + (x_{2}-6)^{2}$$
s.t. $x_{1}^{2} (x_{2}) (x_{2}) (x_{1}-x_{2}) (x_{2}-x_{2})$
Compute the Lagrange multipliers at point $(2,4)$.

Example 7.2. (*) Consider the nonlinear programming problem

min
$$(x_1 - 3)^2 + (x_2 - 2)^2$$

s.t. $x_1^2 + x_2^2 \le 5$,
 $x_1 + x_2 \le 3$,
 $x_1 \ge 0$, $x_2 \ge 0$,



Compute the Lagrange multipliers at point (2,1).

Example 7.3. Using the KKT conditions find the closest point tq(0,0) in the set defined by

$$M = \{ x \in \mathbb{R}^2 : \underline{x_1 + x_2 \ge 4}, \ \underline{2x_1 + x_2 \ge 5} \}.$$

Can several points (solutions) exist?

5.t.
$$x_1 + x_2 \ge 4$$
 u_1 } pripustnost $2x_1 + x_2 \ge 5$ u_2 } pripustnost

$$\angle \begin{pmatrix} x_{1}, x_{2}, u_{1}, u_{2} \end{pmatrix} = x_{1}^{2} + x_{2}^{2} + u_{1} (4 - x_{1} - x_{2}) + u_{2} (5 - 2x_{1} - x_{2})$$

$$u_1\left(4-\chi_1-\chi_2\right)=0$$

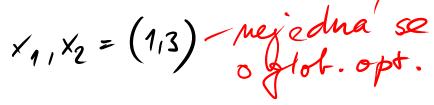
$$2x_1 - u_1 - 2u_1 = 0$$

$$2 \times 2 - u_1 - u_2 = 0$$

$$x_1 + x_2 = 4$$

 $2x_1 + x_2 = 5$

$$x_1, x_2 = (1,3)$$

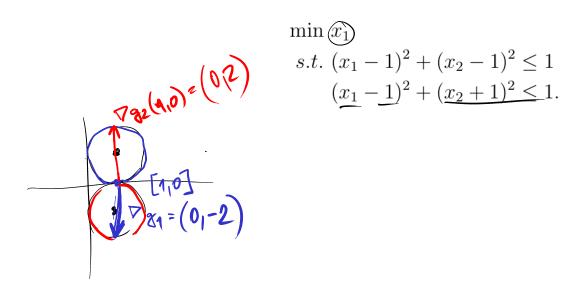


$$2 - u_1 - 2u_2 = 0$$

U, = 2-2u,

$$\begin{array}{lll}
x_{1} + x_{2} = 4 & 2x_{1} + x_{2} > 5 \implies u_{2} = 0 \\
2x_{1} - u_{1} = 0 & x_{1} = x_{2} = 2 \\
(x_{1} x_{2}) = (2,2) & \\
u_{1} = 4 & (2,2,4,0) & \\
\implies & (2,2) & \text{if soly} \\
\xrightarrow{\text{res. ulohy}}
\end{array}$$

Example 7.13. Consider the problem



Example 7.14. Consider the problem with real parameter a

