7 Nonlinear programming problems: Karush—Kuhn—
Tucker Optimality conditions

7.1 A few pieces of the theory

We emphasize that this section contains just a basic summary and we refer the readers
to the lecture notes for formal definitions and propositions.

Consider a nonlinear programming problem with 1nequahty and equality

constraints: -~ 2 0 77‘:»\"
(T - b -
\\H hy(r) =0, j=1,.. @@0@
1e set of

where f,g;,h; : R" — R are differentiable functions. notc by
feasible solutions.

We say that the problem is convex if functions f, g;,V; are convex and h;,V;
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Define the Lagrange function by
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The Karush—Kuhn—Tucker optimality conditions are then (feasibility, comple-
mentarity and optimality):
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Any point (z,u,v) which fulfills the above conditions is called a KKT point.
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If a Constraint Qualification (CQ) condition is fulfilled, then the KKT conditions
are necessary for local optimality of a point. Basic CQ conditions are:

e Slater CQ: 37 € M such that (%) < 0 for all i and the gradients V.hi(Z),

7 =1,...,1 are linearly independent.

e Linear independence CQ at & € M: all gradients 3/;’
V.9i(2), i € I,(2), Vohj(z), j=1,...,1

are linearly independent.

These conditions are quite strong and are sufficient for weaker CQ conditions. e.g.
the Kuhn—Tucker condition (Mangasarian-Fromovitz CQ, Abadie CQ, ...).

To summarize, we are going to practice the following relations:

1.<KKT point and convex problem — global optimality at x.

2. Local optimality at x and a constraint qualification (CQ) condition — 3(u,v)
such that (x,u,v) is a KKT point.



Example 7.1. Consider the nonlinear programming problem
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Example 7.2. (*) Consider the nonlinear programming problem
min (z; — 3)* + (x5 — 2)*
s.t. If - lj < 5,
2y + 19 < 3,
x>0, 29 20,

Compute the Lagrange multipliers at point (2,1). A,

Ezample 7.3. Using the KKT conditions find the closest point td (0,0) jn the set

defined by '
M ={ze€R?*: 2y +x9 >4, 2z, + 13 > 5}.
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Can several points (solutions) exist?
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FExample 7.13. Consider the problem
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FExample 7.14. Consider the problem with real parameter a
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